Cumulative Subject Index1

Volumes 91-96

Α

Acetaldehyde

from ethylene oxide isomerization on single-crystal Ag(111), 93, 92

partial oxidation from ethane over Mo/SiO₂ catalyst, **94,** 37

Acetic acid

direct generation from synthesis gas, **96**, 439 Acetophenone

asymmetric transfer hydrogenation, catalytic precursor role of Rh(I) complexes containing chiral diphosphines, **94**, 292

Acetylene

vapor phase hydrochlorination, 96, 292

Acid-base

modification of selectivity, nickel porphyrin catalytic hydrodemetallation, **93**, 135

Acidity

oxide support, effect on Pt dispersion during O₂ treatment, **95**, 492

surface, and cumene conversion of fluorided γ -Al₂O₃, 96, 115

Acid sites

in alkane cracking on zeolite catalysts, 93, 30

on γ-Al₂O₃, effect of fluorination, 92, 284

Brønsted and Lewis, role in alkane cracking on zeolites, 93, 30

on molybdena-alumina catalyst, infrared and gravimetric studies of adsorbed pyridine, **94**, 408

Acrolein

from propylene oxidation over Bi₂Mo₃O₁₂, mechanism, **96**, 222

Activity

γ-Al₂O₃-supported Group VIII metals, 1-butene isomerization, **93**, 161

K₂SO₄-promoted unsupported V₂O₅ catalyst for methanol oxidation, **93**, 360

reduced iron-manganese oxide CO catalysts, 92, 109

silica-supported Fe nitride, promotion effects of K and N, 91, 241

zeolite Y-supported Ru, effect of support, 91, 283 Additives

B, K, and P: effect on CO hydrogenation over Ru/ Al₂O₃, 95, 41

Adsorption, see also Chemisorption

CO on

fused iron catalyst, characterization with *in situ* laser Raman spectroscopy, **95**, 325

LaMO₃ perovskites, 95, 558

Ni/SiO₂ catalysts, structural sensitivity, **96**, 210 Ni/TiO₂ and Ni/Ti₂O₃ catalysts, **96**, 491

oxide surfaces, lateral interactions, infrared spectroscopy, **94**, 10

Pt/TiO₂ catalysts, 92, 11

SiO₂- and Nb₂O₅-supported Ni catalysts: role of carbonyl formation and support effects, **94**, 343

SiO₂-supported Pd catalysts for methanol synthesis, infrared spectra, **95**, 465

ZnO clean and pretreated surfaces, 92, 79

equilibrium, see Equilibrium adsorption

H₂/CO coadsorption

on Ni, effects of titania adspecies, 96, 597

on Ni/SiO₂ catalysts, structural sensitivity, **96**, 210

heat of, see Heat of adsorption

H₂ on Pt catalysts, direct measurement of heats of adsorption, **95**, 57

NO on

LaMO₃ perovskites, 95, 558

SiO₂-supported Pt, infrared spectroscopy, **91**, 208

Ag at high O₂ pressures, 96, 72

Ag(I) in polyfluorocarbon sulfonic acid films, 93, 430

K-covered Au surfaces, 96, 420

LaNiO₃, kinetics, 93, 83

pyridine on MoO₃/Al₂O₃, catalyst acidic properties upon reduction in hydrogen: infrared and gravimetric studies, **94**, 408

studies, suitability of acid-washed Pt powder surfaces, 94, 225

Adsorption constants

styrene and α -methylstyrene over Rd/AlPO₄ catalysts, **94**, 1

Alcohol

dehydration on/in heteropoly compounds, 95, 49 effect on Ru(III)-sulfonated linear polystyrene ionomers, 94, 531

production by Fe/SiO₂ catalyst, diethylamine effect, **95**, 602

Alkali

concentration, effect on supported Ni with alkali promoters, 93, 152

Alkaline earth

-supported Ru catalyst for N₂ activation, **93**, 305 Alkali promotion

CO hydrogenation

on supported Ni: support, preparation, and alkali concentration effects, 93, 152

All rights of reproduction in any form reserved.

¹ Boldface numbers indicate appropriate volume; lightface numbers indicate pagination.

over Rh/TiO₂, 95, 435

on Rh/TiO₂, surface reaction analysis with added ethylene, **92**, 416

fused iron catalyst for Fischer-Tropsch synthesis, in situ laser Raman spectroscopy, 95, 325

Ru/Al₂O₃ catalysts for ammonia synthesis, **92**, 296 SiO₂-supported Pd catalysts for methanol synthesis, **95**, 465

on supported Ni: support, preparation, and alkali concentration effects, 93, 152

Alkanes, see also Paraffin

hydrogenolysis on Mo(O)/Al₂O₃ catalysts, mechanism, 93, 399

Alkenes

hydrogenation over polymer-bound Pd(II) complexes, 92, 327

Alkylammonium heteropolyates

Mo and W, catalysts of methanol and ethanol conversions, 91, 132

Alkylation

benzene, with [1-14C]ethanol over ZSM-5 catalyst: carbon-14 rearrangement, **96**, 357

ethylbenzene with ethylene, p-diethylbenzene production over ZSM-5 zeolite catalysts, 95, 512

Alkyl intermediates

on Ru/SiO₂, characterization with ¹³C NMR, **95**, 305

Alkynes

hydrogenation over polymer-bound Pd(II) complexes, **92**, 327

Allotropic transformation

Co powder catalytic activity in NH₃ synthesis, 94, 155

Alloys

Ag-Cd-based catalysts, ethylene oxidation, 91, 36 Cu-Group IV metal amorphous, catalyst precursors for methanol synthesis, 96, 296

Cu-Ni powders, surface composition determination by chemisorption, **95**, 346

Cu-Si, surface analysis, 95, 396

Fe catalysts, Al₂O₃-supported: structure analysis with Mössbauer and X-ray photoelectron spectroscopy, **96**, 58

Pt-Ru, Pt-Rh, and Pt-Pd, synthesis by precipitation, 95, 353

surface segregation, spheroidal particles, **92**, 409

benzoin and benzil reactions over, 92, 422

 α -diketone decarbonylation over, 92, 422

-doped silica gels, for pyridine synthesis: X-ray photoelectron spectroscopy, **94**, 69

reducibility and hydrogen chemisorption properties, 94, 558

support for

Co catalysts: CO hydrogenation, structure sensitivity and effect on product distribution, **92**, 376 CoO catalyst

temperature-programmed reduction, 93, 38

temperature-programmed sulfiding and reduction, 96, 122

CoO-MoO₃ catalysts, temperature-programmed reduction, **96**, 381

Cu catalyst, surface properties, spectroscopic characterization, 94, 514

Cu-ZnO catalysts for low-temperature CO shift, X-ray absorption fine structure technique, 96, 314

Fe catalysts

in situ Mössbauer spectroscopic characterization, 96, 314

reduction behavior in CO or H₂ atmospheres, **96**, 261

role of physical and chemical interactions, 94, 239

Ir catalyst, sulfur chemisorption thermodynamics, 94, 543

metal cluster, high-resolution electron microscopy, 94, 313

Mo catalysts

acid sites on, infrared and gravimetric studies of adsorbed pyridine, **94**, 408

characterization by low-temperature oxygen chemisorption, **92**, 432

propane hydrogenolysis, 93, 388

Mo(O) catalyst, alkane hydrogenolysis, 93, 399 MoO₃ catalysts

preparation by equilibrium adsorption, characterization, 95, 501

temperature-programmed sulfiding, 92, 35

Ni catalyst, low-temperature methanation and Fischer-Tropsch activity, 94, 566

Ni-Cu catalysts, cyclopropane hydrogenolysis, **94,** 289

Ni-Fe alloy particles, methanation kinetics, 91, 11

Ni-Mo large-pore catalysts for upgrading coal liquids, **95**, 406

NiO-MoO₃ catalysts, H₂O and NiO effects on surface structure, *in situ* Raman spectroscopy, **95**, 414

Ni particles, sintering behavior in H₂ atmosphere, **96**, 12

Pd catalyst

 CO_2 adsorption and surface interaction with H_2 , 95, 567

surface ethylidyne infrared spectroscopic characterization, **96,** 1

Pt catalysts

CO oxidation under transient conditions, Fourier-transform infrared transmission spectroscopy, 94, 128

dispersion, chlorine effect, 92, 64

H₂ heat of adsorption, direct measurement, 95, 57

and Pt-Re catalysts, pretreatment effect on activity and selectivity maintenance, **96**, 499

structure-sensitive poisoning by CO, 94, 203

Pt-Re sulfided reforming catalyst, reaction kinetics of methylcyclohexane dehydrogenation over, **96**, 507

Re₂O₇ catalysts, temperature-programmed reduction, **93**, 231

Rh-containing automotive exhaust catalysts, water-gas shift over, 94, 166

Ru catalysts

for ammonia synthesis, alkali promotion effect, **92,** 296

for CO hydrogenation, effect of K, B, and P additives, 95, 41

low-temperature methanation and Fischer-Tropsch activity, **94**, 566

tetraosmium cluster anions, precursors of catalysts for but-1-ene isomerization, **94**, 195

V₂O₅ catalyst, active surface area determination by electrophoretic migration and X-ray photoelectron spectroscopy, **95**, 520

WO₃, laser Raman characterization, **92**, 1 surface, potassium migration, **92**, 17

 α -Alumina

support for Ni catalyst for methane-steam reforming, formaldehyde intermediate, 95, 313

γ-Alumina

fluorided, acidity and reactivity, **96**, 115 fluorinated, acid sites, **92**, 284

support for

CO hydrogenation catalysts, 91, 272

Group VIII metals, 1-butene isomerization, 93, 161

Ir, particle redispersion with chlorine-containing gases, 96, 154

Os catalysts for CO hydrogenation, particle size effects, 95, 370

Pd-Rh bimetallic catalyst, properties for methylcyclopentane hydrogenolysis, benzene and 1hexene hydrogenation, and benzene hydrogenation deactivation by thiophene, **95**, 167

presulfided Ni-W catalysts, aromatic compound hydrogenation in synthetic crude distillates, **95**, 155

Pt catalyst, hydrogen spillover to, 95, 296

Pt-Ir bimetallic catalysts, redispersion in chlorine-containing gases, **96**, 170

Re₂O₇, formation and structure under precatalysis conditions, **94**, 97

Rh catalysts, strong metal-support interactions and CO hydrogenation, **96**, 106

Alumina-silica, see Silica-alumina

Alumina-titanium dioxide

mixed-oxide support for Pt and Ir catalysts, chemisorption properties and SMSI formation, 95, 473

Aluminum

-Cu-Zn mixed oxides, catalytic behavior for lowtemperature methanol synthesis, 94, 120 insertion in high-SiO₂ zeolite frameworks, 93, 471 Aluminum mesoperrhenate

formation under Re₂O₇/ γ -Al₂O₃ precatalysis conditions, **94**, 97

Aluminum orthophosphate

-supported Rh catalysts, styrene and α -methylstyrene individual and competitive hydrogenation, 94, 1

Aluminum phosphate

support for Ni catalysts, metal-support interactions, 96, 202

Aluminum-phosphorus-oxygen

stoichiometric and nonstoichiometric catalysts, analysis with probe molecule 2-methylcyclohexanol. 96, 242

Amines

chemical trapping of surface intermediates in methanol synthesis, **95**, 423

Ammonia

and *n*-butylamine, temperature-programmed desorption on mordenites, **96**, 288

-CO and pyridine-CO interactions on MgO-CoO solid solutions, infrared spectra, 96, 586

in HCN synthesis on clean Rh, 91, 116

preadsorbed on MgO, reaction with CO, 93, 331 synthesis

over alkali-promoted Ru/Al₂O₃, **92**, 296 Co powder catalytic activity, **94**, 155 high-pressure, hysteresis, **94**, 563

over Ru/alkaline earth catalyst, 92, 305

Ammonium heteropolyates

Mo and W, catalysis of methanol and ethanol conversions, **91**, 132

Anatase-vanadium pentoxide, see Vanadium pentoxide-anatase

Anion-exchange resins

deuterium transfer between liquid chloroform and water, 93, 209

Anisole

hydrogenolysis on sulfided CoMo/Al₂ and NiMo/ SiO₂-Al₂O₃ catalysts, effect of catalyst acidity, **94**, 230

Antimony

excess, role as promoter in selective oxidation in Fe-Sb system, 91, 85

Antimony-iron, see Iron-antimony

Aromatic compounds

hydrogenation in sulfided Ni-W/γ-Al₂O₃-catalyzed synthetic crude distillates, **95**, 155

Aromatic hydrocarbons

hydrocarbon production from methanol over ZSM-5 zeolite, comment, **93**, 205; reply, **93**, 207

Arrhenius plots

inversion, hydrogen effects, 91, 181

Auger electron spectroscopy

potassium migration on iron and Al₂O₃ surfaces, **92**, 17

Raney catalysts, surface analysis, 93, 55

peracids, 96, 347

92, 216

oxidation to maleic anhydride by V-P-O catalysts,

Autocorrelation Butene directional, and diffusional tortuosity of capillary isomerization, catalysis on crystalline zirconium porous media, 93, 192 phosphate, 94, 491 oxidative dehydrogenation by bismuth molybdate В catalysts: in situ electrical conductivity measurements, 95, 84 **Basicity** n-Butene oxide support, effect on Pt dispersion during O2 oxidation on vanadium oxide clusters, selectivity, treatment, 95, 492 91, 54 Benzene 1-Butene alkylation with [1-14C]ethanol over ZSM-5 catalyst, hydrogenation, catalytic activity of Chevrel phase carbon-14 rearrangement, 96, 357 compounds, **93**, 375 and 1-hexene, hydrogenation: properties of γ-Al₂O₃isomerization supported Pd-Rh bimetallic catalysts, 95, 167 catalyst precursors: Al2O3-supported tetraosmium hydrogenation cluster anions, 94, 195 deactivation by thiophene, properties of γ-Al₂O₃on Group VIII metals, 93, 161 supported Pd-Rh bimetallic catalysts, 95, 167 selective oxidation to maleic anhydride over Ni kinetics, comment, 94, 319; reply, 94, 322 MoO₄ catalysts with excess MoO₃, 95, 137 reduced nickel hydromolybdate, 91, 356 n-Butylamine Benzil and NH₃, temperature-programmed desorption on reactions over Al₂O₃, 92, 422 mordenites, 96, 288 Benzoin reactions over Al₂O₃, 92, 422 С Benzyl sulfonic acid siloxane isobutene oligomerization, 94, 187 Calcination Beryllium silicates temperatures, effects on WO₃/Al₂O₃, 92, 1 with zeolite-type structure: synthesis, catalytic Carbenium ions properties, and 9Be NMR chemical shifts, 94, β -cracking of *n*-heptane branched isomers on acidic 508 zeolite, 94, 445 Binder activation, of high-SiO₂ ZSM-5 zeolite, 93, 471 Carbon adsorbed species during CO hydrogenation over un-Bismuth molybdate supported Ru, Ni, and Rh, 94, 385 catalysts for oxidative dehydrogenation of butene, ¹⁴C rearrangement in benzene alkylation with electrical conductivity in situ measurements, 95, 84 [1-14C]ethanol over ZSM-5 catalyst, 96, 357 α-Bismuth molybdate deposition propylene oxidation to acrolein over, mechanism, from CH₄ and CO on Ni, 95, 13 on iron by acetone/CO₂ catalytic decomposition, 96, 222 conversion electron Mössbauer spectroscopy, Book reviews 94, 360 Energy Resources through Photochemistry and Caand methane steam reforming on SiO₂-supported talysis, M. Grätzel (Ed.), 1983, 91, 183 Zeolites: Science and Technology, F. F. Ribeiro, A. Ni-Cu catalysts, 96, 517 E. Rodrigues, L. D. Rollman, and C. Nacdiffusion mechanism, coke deposition on catalysts, coche, 1984, 96, 616 93, 182 filamentous determination in borosilicate molecular sieves, 91, formation on Fe and Ni catalysts mechanism, 96, 481 morphology, 96, 481 effect on CO hydrogenation over Ru/Al₂O₃, 95, 41 thermodynamics, 96, 454 Borosilicate growth on TiO₂-treated Ni surfaces, 93, 312 molecular sieves, boron determination, 91, 352 gasification, deactivation of Ni catalyst, 95, 71 1,3-Butadiene selective oxidation to maleic anhydride over Ni hydrogenation on Ni, support effects on kinetics, 91. 78 MoO₄ catalysts with excess MoO₃, 95, 147 interstitial, in Pd, 95, 621 n-Butane isomerization catalyzed by polymer-supported susupport for

Fe-Ru catalysts, 91, 338

tion, 93, 231

Re2O7 catalysts, temperature-programmed reduc-

surface

hydrogenation on Ru(001), formation of methyne intermediates, 94, 51

Ni deactivation in methanation reaction, 92, 312 Carbonaceous species

on Ru catalysts, NMR characterization, 93, 1 Carbon dioxide

and H₂, surface interaction over supported Pd catalyst, **95**, 567

hydrogenation over Rh/TiO₂, effect of variation in support electric properties, **95**, 578

¹⁸O-labeled, role in methanol synthesis on Cu-Zn oxide catalyst, 96, 251

Carbonium ions

intermediates, over SiO₂-Al₂O₃ and acidic zeolites, 92, 355

Carbon monoxide

adsorbed under H₂ and hydrogenated on supported Ni, Ru, and Co catalysts, methane formation mechanism, **94**, 566

adsorption on

fused iron catalyst, characterization with *in situ* laser Raman spectroscopy, **95**, 325

LaMO₃ perovskites, 95, 558

Ni/SiO₂ catalysts, and coadsorption with H₂, structural sensitivity, **96**, 210

oxide catalysts, lateral interactions, infrared spectroscopy, **94**, 10

Pt/Cab-O-Sil, interaction with H_2 and O_2 , 92, 388

Pt/TiO₂, 92, 11

SiO₂- and N₂O₅-supported Ni catalysts, role of carbonyl formation and support effects, **94**, 343 SiO₂-supported Pd catalysts for methanol synthesis, infrared spectra, **95**, 465

ZnO surface, CO/D₂ interaction, 92, 79

atmosphere, reduction behavior of supported Fe catalysts, 96, 261

chemisorption on Ni, effects of varying titania surface coverage, 95, 587

desorption-adsorption infrared doublet, production on Pt/Cab-O-Sil, 92, 388

desorption from supported Ru particles, **95**, 361 disproportionation

on Ni/SiO₂, kinetics and nature of deposited carbon, **95**, 13

on Pd/SiO₂, 91, 1

dissociation on NaX-zeolite-supported Rh, infrared spectroscopy, **94**, 297

effect on Ru(III)-sulfonated linear polystyrene ionomers, 94, 531

and H₂

coadsorption on Ni, effect of titania adspecies, 96, 597

interactions with Pd/SiO₂ and Pd/La₂O₃, **96**, 88 reaction on Rh/TiO₂ catalysts, **94**, 300 selective olefin synthesis with Na[Ru₃H(CO)₁₁]

supported on metal oxides, 95, 293

hydrogenation

by γ-Al₂O₃-supported Os catalysts, particle size effects, **95**, 370

on γ-Al₂O₃-supported RhOs₃, Rh₄, and FeOs₃ clusters, **91**, 272

on carbon-supported Fe-Ru catalysts, 91, 338

on Co/Al₂O₃, **92**, 376

on Co catalysts, 95, 527

coverages of carbon- and hydrogen-containing species on Ru, 91, 142

gold effect, 93, 256

on inorganic oxide-attached Mo(II)-monomer catalysts, selective ethane formation, 96, 613

iron-manganese oxide catalysts, 92, 98, 109

over Mo(100) single crystals and polycrystalline foils, 94, 60

on Ni/TiO₂ and Ni/Ti₂O₃ catalysts, **96**, 491 over Rh, deuterium isotope effects, **95**, 317 on Rh/γ-Al₂O₃ and Rh/ZrO₂ catalysts, **96**, 106 over Rh/TiO₂

alkali promotion effect, **95**, 416, 435 effect of variation in support electric properties, **95**, 578

over Ru

supported and unsupported, 93, 1 support effects, 96, 23

Y-zeolite-supported, 91, 283

over Ru/Al₂O₃, effect of K, B, and P additives, **95**, 41

over SiO₂-supported Ni, Ru, Rh, and Pd: addition of probe reactants, **96**, 396

on ThO₂ catalyst, methanol production, **95**, 385 over unsupported Ru, Ni, and Rh: carbon- and hydrogen-containing adspecies, **94**, 385

oxidation

on Pd/Al₂O₃, catalytic reactor system for transient response, **94**, 468

on Pd/SiO₂, spatial coverage and temperature patterns during oscillations, **93**, 321

over Pt/Al₂O₃ under transient conditions, Fouriertransform infrared transmission spectroscopy, **94,** 128

on Pt/SiO₂, self-sustained oscillations, surface coverage and inhomogeneous temperature patterns, **91**, 216

oxidation reaction, Rh field-emitter surface oxidation, 92, 167

Pt/Al₂O₃ poisoning, structural effects on methylcyclopropane hydrogenolysis, **94**, 203

Pt/TiO₂ poisoning, effect of metal-support interactions, 94, 218

reaction with ammonia preadsorbed on MgO, 93,

reduction, behavior of Fe-exchanged mordenite, 96, 182

shift reaction on Cu–ZnO/Al₂O₃ catalysts at low temperature, X-ray absorption fine structure technique, **96**, 314

Carbon monoxide-carbon dioxide

treatment, effect on catalytic activity of magnetite particles on graphite, 91, 167

Carbon monoxide/hydrogen reactions, see also Synthesis gas

SiO₂-supported Rh catalyst, MnO and MoO₂ promoter effects, 93, 340

over TiO₂-supported Fe catalysts, oxidation effect, **96**, 408

Carbonyl

-derived Co catalysts, magnetic properties, 95, 527
 formation on supported Ni catalysts, role in CO adsorption, 94, 343

Carbonylation

methanol catalyzed by Co and Rh, cylindrical internal reflectance in situ infrared spectroscopy, 95, 21

Carburization

Fe-MnO CO catalysts, 92, 109

Catalysis

acidic, acid-catalytic behavior of 12-tungstophosphates for dehydration of alcohols, **95**, 49

active site, NO decomposition on Pt(210) and Pt(410), 95, 244

deuterium transfer by anion-exchange resins, 93, 209

redox, Fe-exchanged mordenite: behavior toward CO reduction, 96, 182

supported liquid-phase, see Supported liquid-phase catalysis

Catalysts

acidity, effect on anisole hydrogenolysis, 94, 230

Ag-Cd alloys, ethylene oxidation, 91, 36

Al₂O₃-supported tetraosmium cluster anions, precursors for but-1-ene isomerization, **94**, 195

automotive, water-gas shift over Rh, transient enhancement, 94, 166

bimetallic

metal dispersion via stepwise chemisorption and surface titration, 95, 271, 284

supported, preparation from metal clusters, **91**, 272

CO shift, X-ray absorption fine structure technique, 96, 314

Cu/Zn/Al mixed oxides for low-temperature methanol synthesis, behavior, 94, 120

deactivation by site coverage and port blockage, percolation model, 96, 552

fluid-cracking, metal poisoning effects: luminescence probe, 96, 363

hole-catalyzed and photoassisted hole-catalyzed cycloadditions by zeolites, 95, 300

hybrid, Pd- and faujasite-containing, synthesis gas conversion to C₂, C₃, and C₄ paraffins, **94**, 16 hydrocarbon conversion, Re and S effects on Pt/

Al₂O₃, **96**, 371

hydrocracking, Co-Mo commercial: cumene disproportionation, effects of zeolite unit cell size on reaction rate and catalyst deactivation, 95, 220

hydrodesulfurization, see Hydrodesulfurization hydrotreating

Fe-MoSi₂ catalytic and physicochemical properties, **94**, 310

MoS₂ and WS₂, role of Group VIII promoter, 91, 308, 318

surface structure characterization with ion scattering spectrometry, 95, 309

initial transformations, Ni role, 91, 64

metal crystallites, supported: role of physical and chemical interactions, 94, 239

metal, TiO₂-deposited, strong metal-support interactions, electronic effects, comment, **94**, 581; replies. **94**, 586, 587

mixed metal oxides for methanol synthesis: adsorbed species characterization with Fourier transform infrared spectroscopy, **94**, 175

multicomponent systems, limits to pseudo-massaction and pseudomonomolecular kinetics, 94, 148

oxides, adsorbed CO molecules, lateral interactions: infrared spectroscopy, **94**, 10

photoelectrochemical preparation of Pt/TiO₂, **92**, 11 poisoning reaction and catalytic deactivation, kinetic parameters, **95**, 447

Pt/TiO₂, inhibition by reduced TiO_x, 93, 216

reforming, activity and selectivity maintenance, comparison, 96, 499

Rh(I) complexes containing chiral diphosphines, precursors in asymmetric transfer hydrogenation of acetophenone, 94, 292

spherical pellets, porous: geometric correction factor for Weisz diffusivity cell, 94, 303

supported liquid-phase oxychlorination, microstructure, 93, 23

temperature rises, local, 91, 185

thermally activated, synthetic anionic clay minerals, catalytic reactions, **94**, 547

tungsten sulfide, characterization, 95, 249 Catalytic activity

Chevrel phase compounds for thiophene hydrosulfurization and 1-butene hydrogenation, 93, 375

Co₃O₄ in toluene oxidation, effect of samarium, **93**, 186

electronically driven geometrical changes on Ag, Cu, and Pt surfaces, 94, 570

Group VIII metal promoter role in MoS₂ hydrotreating catalysts, 94, 310

propylene hydroformylation on RhNaX and RhNaY, 96, 563

Pt on CeO₂ in methanation and water-gas shift reaction, **96**, 285

studies, suitability of acid-washed Pt powder surfaces, 94, 225

sulfided Mo-y-Al₂O₃ catalysts, 96, 276

supported metal chloride catalysts, correlation, 96,

thermally activated, synthetic anionic clay minerals, 94, 547

Catalytic properties

acid sites on molybdena-Al₂O₃ upon reduction in hydrogen, infrared and gravimetric studies, **94**, 408

γ-Al₂O₃-supported Pd-Rh bimetallic catalyst, for methylcyclopentane hydrogenolysis, benzene and 1-hexene hydrogenation, and benzene hydrogenation deactivation by thiophene, 95, 167

[B]ZSM-5 zeolite, 93, 451

magnetic, Co catalysts derived from carbonyl, 95, 527

Ni-promoted catalysts 91, 318

perovskite-type LaFeO and LaCoO₃ mixed oxides, effects of Sr²⁺ and Ce⁴⁺ substitution for La³⁺, **93**, 459

rare earth metal catalysts for hydrogenation of unsaturated hydrocarbons, **96**, 139

tetrapropyl ammonium-ZSM-5 zeolite, effect of decomposition conditions, **94**, 573

Catalytic reactions

hydrocarbon, particle size sensitivity, 96, 82

Catalytic reactors

fixed-bed, coke profile determination by neutron attenuation technique, **96**, **146**

Cation exchange

SiO₂-supported Ru catalysts, Ru(CO)₅ production, 92, 184

Cerium dioxide

support for Pt catalyst, activity in methanation and water-gas shift reaction, 96, 285

Cerium oxide

support for Pt catalyst, ethylene and oxygen reaction on, 93, 353

Cesium

effects in ethylene oxide isomerization on singlecrystal Ag(111), 93, 92

Chain growth

mechanism, McCandlish: for Fischer-Tropsch synthesis, 92, 180

probabilities for Fischer-Tropsch synthesis, distribution, **92**, 426

Chemical shifts

carbonaceous species on Ru, ¹³C NMR spectra, 93, 1

Chemisorption

equilibrium, sulfur on Ir/Al₂O₃, 94, 543

[14C]ethylene, on Pt(111) surfaces: hydrogenation and dehydrogenation of organic fragments, 92, 240

ethylidyne on Pd/Al_2O_3 : ir spectroscopic characterization, 96, 1

 H_2

on alumina, properties, 94, 558

and CO on Ni, effects of varying titania surface coverage, 95, 587

on Cu-Ni alloy powders, 95, 346

reduced nickel hydromolybdate, 91, 356

reversible/weak, on supported Ru, 93, 368

on Ru(0001) surface, effects of added Cu, 94, 576

uptake suppression of Pt and Ir on TiO₂-Al₂O₃ mixed-oxide supports, **95**, 473

inhibition in Pt/TiO₂ catalysts, 93, 216

methoxy groups on metal oxides, CH stretching band shift, 92, 173

Ni catalysts, support effects, 93, 270 NO and O₂ on MoO₃/Al₂O₃, 95, 501

O

and H₂ on Ru-Au bimetallic catalysts, 95, 271,

low-temperature, on Mo/Al₂O₃: characterization, **92**, 432

on unsupported MoS₂ catalyst, pretreatment effects, **95**, 455

Chevrel phase compounds, see Molybdenum sulfide, reduced

Chlorine

-containing gases

Ir particle redispersion on SiO₂ and γ-Al₂O₃ supports, **96**, 154

Pt-Ir particle redispersion on γ -Al₂O₃ and SiO₂ supports, **96**, 170

effect on

catalytic decomposition of CH₃OH on Ni foil, 94, 142

SiO₂- and Al₂O₃-supported Pt dispersion, 92, 64 promotion of selective ethylene oxidation over Ag(110), kinetics and mechanism, 92, 272

Chloroform

liquid, and water: deuterium transfer by anion-exchange resins, 93, 209

poisoning of anisole hydrogenolysis on sulfided CoMo/Al₂O₃ and NiMo/SiO₂-Al₂O₃ catalysts, **94**, 230

solubility in NaOH solution, 93, 209

Chromium

ide

ethane dehydrogenation, 91, 155

SiO₂-supported catalysts

for ethanol oxidation, properties, **94**, 24 for ethylene polymerization, **92**, 260

Chromium oxide-copper, see Copper-chromium ox-

Chromium trioxide

methanol decomposition over, behavior of surface formate ions as reaction intermediates, **94**, 353 Clay minerals

anionic, catalytic reactions, **94**, 547

in transformation of organic compounds, **92**, 291 Clusters

metal, supported on spinel Al₂O₃, high-resolution electron microscopy, **94**, 313

RhOs₃, Rh₄, and FeOs₃ in catalyst preparation for CO hydrogenation, **91**, 272

tetraosmium, precursors of catalysts for but-1-ene isomerization, **94**, 195

Coal

liquids, upgrading with Ni-Mo/Al₂O₃ large-pore catalysts, **95**, 406

Cobalt

Al₂O₃-supported, CO hydrogenation: structure sensitivity and effect on product distribution, 92, 376

Co₃O₄ in toluene oxidation, effect of samarium on catalytic activity, **93**, 186

-doped MoS₂ crystals, edge plane reactivity, 92, 56 kieselguhr-supported, low-temperature methanation and Fischer-Tropsch activity, 94, 566

methanol carbonylation, cylindrical internal reflectance in situ infrared spectroscopy, 95, 21

powder, catalytic activity in NH₃ synthesis, 94, 155

SiO₂-supported and carbonyl-derived, magnetic properties, **95**, 527

ZSM-5-supported, structure, in situ X-ray diffraction, 92, 145

Cobalt-molybdenum

γ-Al₂O₃-supported, fluorided: surface acidity and cumene conversion, **96**, 115

commercial hydrocracking catalyst, cumene disproportionation on: effects of zeolite unit cell size on reaction rate and catalyst deactivation, 95, 220

hydrodesulfuration catalysts, ⁵⁹Co NMR study, **96**, 189

TiO₂-supported, preparation and characterization, **92**, 340

Cobalt oxide

Al₂O₃-supported

temperature-programmed reduction, **93**, 38 temperature-programmed sulfiding and reduction, **96**, 122

Cobalt oxide-molybdenum trioxide

Al₂O₃-supported, temperature-programmed reduction, **96**, 381

methanol carbonylation, cylindrical internal reflectance in situ infrared spectroscopy, 95, 21

Cobalt-ruthenium

Bu₄PBr-supported catalyst, acetic acid generation from synthesis gas, **96**, 439

Cobalt sulfides

in Co-based hydrodesulfuration catalysts, ⁵⁹Co NMR study, **96**, 189

Coke

deposition on catalysts, mechanism, 93, 182 profiles, determination in fixed-bed catalytic reactors by neutron attenuation technique, 96, 146 Composition

Ni/SiO₂ catalysts, precipitated precursors: effects of preparation conditions, **96**, 429

Conversion

methanol, aromatic hydrocarbon in, 93, 207

Conversion electron Mössbauer spectroscopy carbon deposition on iron by acetone/CO₂ catalytic decomposition, **94**, 360

Coordination

vanadium ions in surface complexes, 91, 54

Cope reaction

hole-catalyzed photoassisted on zeolite, **95**, 613 Copper

Al₂O₃-supported, surface properties: spectroscopic characterization, **94**, 514

 γ -Al₂O₃-supported, isopropanol decomposition: surface chemistry and catalytic behavior, 91,

Cu²⁺, active state, 93, 68

effect on hydrogen chemisorption on Ru, 94, 576

metallic, dehydrogenation activity, **91**, 69 methanol dehydrogenation to methyl formate, mechanism, **91**, 197

Raney

foraminate catalysts, preparation and properties, **91, 2**5

surface analysis, 93, 55

surface reconstruction, electronically induced geometrical catalytic effects, **94**, 570

-Zn-Al mixed oxides, catalytic behavior for lowtemperature methanol synthesis, 94, 120

ZnO-supported, for methanol synthesis: chemical trapping of surface intermediates by amines, 95, 423

Copper-chromium oxide

methanol synthesis, identification of catalytically active Cu species, 92, 119

Copper-Group IV metals

amorphous alloys, as catalyst precursor for methanol synthesis, **96**, 296

Copper-molybdenum

electron spin resonance, comparison with Ni-Mo and Ni-W catalysts, 91, 308

sulfided catalysts, Al₂O₃-supported, catalyst acidity effect on anisole hydrogenolysis, **94**, 230

Copper-nickel

alloy powders, surface composition determination by chemisorption, 95, 346

SiO₂-supported catalysts

cyclopropane hydrogenolysis, **94**, 289 methane decomposition and steam reforming over, **96**, 517

Copper-ruthenium

bimetallic catalyst, hydrogen spillover from Ru to Cu, 95, 321

Copper salts

of 12-tungstophosphoric acid, 2-propanol dehydration over, 93, 224

Copper silicide

formation 93, 68

Copper-silicon

alloys

silane catalytic formation, **91**, 44 surface analysis, **95**, 396

surface characterization, X-ray photoelectron speceffects of zeolite unit cell size, 95, 220 troscopy, 93, 68 Ni catalysts, methanation reaction, 92, 312 Copper-zinc Pd-Al₂O₃ catalyst in furfural decarbonylation, kinetmixed-oxide catalyst, methanol synthesis; adsorbed ics and mechanism, 91, 254 Pt/Al₂O₃ and Pt-Re/Al₂O₃ catalysts, pretreatment species characterization with in situ Fouriereffects, 96, 499 transform infrared spectroscopy, 94, 175 Copper-zinc oxide by site coverage and pore blockage, percolation Al₂O₂-supported catalysts for CO shift at low temmodel, 96, 552 perature, X-ray absorption fine structure tech-Decarbonylation furfural, Pd-Al₂O₃ deactivation, 91, 254 nique, 96, 314 methanol synthesis catalyst Decomposition catalytic CO₂ role, isotope labeling study, 96, 251 precursors, 93, 442 CH₃OH on Ni foil, chlorine effect, 94, 142 ethylene on Ni: effect of hydrogen, 92, 177 Cracking protolytic, paraffins, 93, 30 effect on surface and catalytic properties of ZSM-5 Crosslinking zeolite obtained from tetrapropyl ammonium activity enhancement of Rh catalysts bound to polyform, 94, 573 acrylic acid, 96, 41 formic acid on supported Rh, 91, 327 isopropanol on supported CuO/γ-Al₂O₃ system, 91, conversion and surface acidity of fluorided γ-Al₂O₃. 96, 115 methane over SiO₂-supported Ni-Cu catalysts, 96, disproportionation 517 and catalyst deactivation on commercial hydromethanol over Cr₂O₃, surface formate-ion behavior as reaccracking catalyst, hydrogen effects, 92, 187 on commerical Co-Mo hydrocracking catalyst, tion intermediates, 94, 353 effects of zeolite unit cell size on reaction rate on Ni(111), 92, 25 and catalyst deactivation, 95, 220 on ZnO, infrared and programmed desorption study, 95, 617 Cupric ion N₂O in NaY zeolites, X-ray photoelectron spectroscopy and electron spin resonance studies, 94, 370 determination of Cu-Ni alloy powder surface Cycloadditions composition, 95, 346 kinetics, 93, 279 hole-catalyzed, by zeolites, 95, 300 Cyclohexane thermal, Co₂(CO)₈ on SiO₂, prepared catalyst maghydrogenation gas-phase reaction turnover rate on netic properties, 95, 527 unsupported Pt powder, 94, 225 Dehydration alcohols on/in heteropoly compounds, 95, 49 Cyclohexanone deuterium addition over iron, mechanism, 93, 75 catalytic, 2-propanol over copper salts of 12-tung-Cyclopentane stophosphoric acid: role of water, 93, 224 -deuterium isotopic exchange formic acid on supported Rh, 91, 327 over Pd/SiO₂ catalysts, comparison with Pt/SiO₂, methanol over 12-tungstophosphoric acid, mechanism: photoacoustic Fourier-transform infrared photocatalytic, over Pt or Ni/TiO2, metal content spectroscopy, 95, 108 and temperature effects in normal or SMSI Dehydrogenation state, 95, 539 ethane over Cr, 91, 155 formic acid on supported Rh, 91, 327 Cyclopentanone deuterium addition over iron, mechanism, 93, 75 isopropanol on supported CuO/γ-Al₂O₃ system, 91, Cyclopropane hydrogenolysis methanol to methyl formate over Cu, mechanism, on Mo/Al₂O₃, 93, 388 **91**, 197

D

in situ infrared technique for catalytic reactions, 95,

Deactivation hydrocracking catalyst commercial, **92**, 187

21

over Ni-Cu/SiO2, 94, 289

Cylindrical internal reflectance spectroscopy

butene by bismuth molybdate catalysts: in situ electrical conductivity measurements, 95, 84 methanol to formaldehyde, 92, 127 photocatalytic, isopropanol on Pt/TiO₂, 91, 293 Deposition

methylcyclohexane over sulfided Pt-Re/Al₂O₃, re-

organic fragments over Pt(111) surfaces, 92, 240

action kinetics, 96, 507

oxidative

carbon, and methane steam reforming on SiO₂-supported Ni-Cu catalysts, **96**, 517

on Pt, 95, 605

ronment, 93, 288

Ag, effects of support, pretreatment, and gas envi-

Dispersion

coke on catalysts, mechanism, 93, 182 Pt particles on SiO₂ and γ -Al₂O₃, chlorine effect, 92, photoelectrochemical, Pt in Pt/TiO2 catalyst preparation, 92, 11 redispersion, see Redispersion ultradispersed Ag catalysts, effect of metal precur-Desorption temperature-programmed sors and reduction procedure, 96, 72 Disproportionation n-butylamine and NH₃ on mordenites, 96, 288 Fe-MnO CO catalysts, 92, 98 CO on hydrogen chemisorption of alumina, 94, 558 Ni/SiO₂, kinetics and nature of deposited carbon, methanol decomposition on ZnO, 95, 617 95, 13 Pd/SiO₂, 91, 1 oxygen from mixed oxides, 93, 459 cumene on commercial hydrocracking catalyst from porous catalysts, diffusional limitations, 93, effects of zeolite unit cell size on reaction rate and 197 thermal, organic fragment hydrogenation and decatalyst deactivation, 95, 220 hydrogen effects, 92, 187 hydrogenation over Pt(111) surfaces, 92, 240 Desorption-adsorption ethylbenzene, production of p-diethylbenzene over infrared doublet of CO on Pt/Cab-O-Sil, 92, 388 ZSM-5 zeolite catalysts, 95, 512 Deuterium Dusty gas -based model for transport and reaction in supported gas-phase, addition to cyclopentanone and cycloliquid-phase catalysts, 95, 181, 193, 202 hexanone over fused iron catalyst, 93, 75 isotope, effects on CO hydrogenation over Rh, 95, Ε 317 isotopic exchange with cyclopentane for Pd/SiO₂ catalysts, compari-Electrical conductivity bismuth molybdate catalysts for oxidative dehydroson with Pt/SiO₂, 94, 478 genation of butene, in situ measurements, 95, H₂-H₂O, Ni catalyzed: metal/oxide support ef-84 fects, 95, 1 -pretreated ZnO surfaces, CO adsorption, 92, 79 Electrolyte potentiometry, see Solid electrolye potensurface ethylidyne on Pd/Al₂O₃, 96, 1 tiometry Electronic effects transfer between liquid chloroform and water by anion-exchange resins, 93, 209 in strong metal-support interactions in TiO2-depos-Deuterium-hydrogen, see Hydrogen-deuterium ited metal catalysts, comment, 94, 581; replies, Diethylamine **94,** 586, 587 Electronic interactions effect on hydrocarbon and alcohol production by Fe/SiO₂ catalyst, 95, 602 Rh and TiO₂ support during CO and CO₂ hydrogenap-Diethylbenzene tion, 95, 578 Electron microscopy production over ZSM-5 zeolite catalysts by ethylbenzene alkylation or disproportionation, 95, analytical, supported Ru-Au bimetallic catalysts, 93, 256 512 Diffusion Electron spectroscopy for chemical analysis, see Xcarbon, mechanism: coke deposition on catalysts, ray photoelectron spectroscopy Electron spin resonance spectroscopy limitations during temperature-programmed desorp-Co catalysts derived from carbonyl, magnetic properties, 95, 527 tion from porous catalysts, 93, 197 Diffusivity Co-Mo, Ni-Mo, and Ni-W catalysts, comparison, in porous media, 93, 192 91, 308 spherical pellet catalysts, geometric correction fac-Cu-NaY zeolites, 94, 370 tor, 94, 303 Ni-W catalysts, 91, 318 V₂O₅-MoO₃ catalysts, interaction with propylene, zeolitic, of hydrocarbons, frequency response **96,** 32 method, **93**, 176 α-Diketones Electrophoresis decarbonylation, 92, 422 migration, Al₂O₃- and TiO₂-supported V₂O₅ cata-Dimethyldichlorosilane lysts, active surface area determination, 95, 520 Energy gradient selectivity formation on copper-silicon alloys, 91, 44 zeolite-catalyzed reactions, 93, 246 1,3-Dioxanes stereoselective isomerization and hydrogenolysis,

forms of carbonyl compounds, determination, 93, 75

over Ag(110), chlorine promotion, 92, 272

Epoxidation

ethylene

by Ag(111) catalyst, comparison with Ag(110), 94, 436

Epoxide

rearrangements, on mineral and silica-alumina surfaces, 92, 291

Epoxystyrene

transformation to phenylacetaldehyde over sepiolite and silica-alumina, 92, 291

Equilibrium adsorption

MoO₃/Al₂O₃ catalyst, preparation and characterization, 95, 501

Erionite

paraffin cracking selectivity, 93, 246

ESCA, see X-ray photoelectron spectroscopy Ethane

dehydrogenation over Cr, 91, 155

partial oxidation to ethylene and acetaldehyde over Mo/SiO₂ catalyst, **94**, 37

selective formation by CO hydrogenation on inorganic oxide-attached Mo(II)-monomer catalysts, **96**, 613

-steam environment for catalytic gasification of graphite by iron, **95**, 101

Ethanol

¹⁴C-labeled, benzene alkylation over ZSM-5 catalyst, carbon-14 rearrangement, 96, 357

conversion on molybdenum and tungsten heteropoly compounds, 91, 132

gas-phase oxidation over Cu(II) and Co(II) ion-exchanged Y-type zeolite catalysts, 93, 303

oxidation on Cr/SiO₂ catalysts, 94, 24

Ethene

effect on Ru-catalyzed CO hydrogenation, 96, 23 Ethylbenzene

alkylation or disproportionation to produce p-diethylbenzene over ZSM-5 zeolite catalysts, 95, 512 Ethylene

addition to CO hydrogenation on Rh/TiO₂, alkali promotion, **92**, 416

¹⁴C-labeled, chemisorption over Pt(111) surfaces: hydrogenation and dehydrogenation of organic fragments, 92, 240

decomposition on Ni, hydrogen effect, **92**, 177 oxidation

over Ag-based alloy catalysts, 91, 36

partial, from ethane over Mo/SiO₂ catalyst, **94**, 37 selective, over Ag(110): chlorine promotion, kinetics and mechanism, **92**, 272

selective and total, over Ag, 92, 364

on zirconium phosphate-supported Ag catalyst, particle size and support effect, **94**, 455

polymerization, Cr(III)/SiO₂ catalysts, **92**, 260

reaction with oxygen on Pt/CeO₂ catalyst, **93**, 353 selective epoxidation by Ag(111) catalyst, comparison with Ag(110), **94**, 436

Ethylene oxide

from ethylene over Ag-based alloy catalysts, **91**, 36 isomerization on single-crystal Ag(111), effects of oxygen and Cs, **93**, 92

Ethylidyne

surface species on Pd/Al₂O₃: ir spectroscopic characterization, **96**, 1

EXAFS, see X-ray absorption fine structure technique

F

Faujasite

paraffin cracking selectivity, 93, 246

-Pd hybrid catalysts, synthesis gas conversion to C₂, C₃, and C₄ paraffins, 94, 16

FCC, see Catalysts, fluid-cracking

Ferric molybdate

methanol oxidation catalysis, electron microscopy, **94,** 79

rearrangement in partial propylene oxidation, in situ Mössbauer spectroscopy, **95**, 289

Field-emitter surfaces

Rh, oxidation during CO oxidation reaction, **92**, 167 Fischer–Tropsch synthesis

activity over supported Ni, Ru, and Co catalysts, 94, 566

on bimetallic Ru-Au catalysts, **93**, 256 chain growth

mechanism, 92, 180

probabilities, distribution, 92, 426

CO and H₂ adsorption on fused iron catalyst, characterization with *in situ* laser Raman spectroscopy, **95**, 325

CO hydrogenation by γ -Al₂O₃-supported Os catalysts, particle size effects, **95**, 370

over Fe/SiO₂, effect of diethylamine on hydrocarbon and alcohol production, **95**, 602

fused iron catalyst for, characterization with in situ laser Raman spectroscopy, 95, 325

promoter effects, 92, 429

selective ethane formation by CO hydrogenation on inorganic oxide-attached Mo(II)-monomer catalysts, **96**, 613

selective olefin synthesis from CO and H₂ with metal oxide-supported Na[Ru₃H(CO)₁₁], **95**, 293

silica-supported Fe catalyst, local temperature rises, **91,** 185

silica-supported Fe nitride

catalyst characterization, 91, 231

K and N promotion effects, 91, 241

Foraminate catalysts

Raney copper, preparation and properties, 91, 25 Formaldehyde

from methanol oxidation on K_2SO_4 -promoted unsupported V_2O_5 catalyst, 93, 360

from methanol oxidative dehydrogenation, 92, 127 Formamide

formation on MgO, infrared emission spectrum, 93,

Formate

surface

behavior as reaction intermediates in methanol decomposition over Cr₂O₃, **94**, 353

location on supported Rh catalysts, 91, 327 Heteropoly compounds Formic acid dehydration of alcohols on/in, 95, 49 decomposition on supported Rh, 91, 327 Keggin structure, temperature-programmed reduc-Fourier-transform infrared spectroscopy tion, 91, 93 CO oxidation Mo and W, methanol and ethanol conversions, 91, over Pt/Al₂O₃ under transient conditions, 94, 128 on Pt/SiO₂, surface reaction dynamics, 91, 216 2-propanol dehydration over H₃PW₁₂O₄₀ copper in situ salts, 93, 224 methanol synthesis on mixed metal oxide cata-1-Hexene lysts, 94, 175 and benzene, hydrogenation: properties of γ-Al₂O₃propylene hydroformylation on RhNaX and supported Pd-Rh bimetallic catalysts, 95, 167 RhNaY, 96, 574 isomerization on H-ZSM-5 zeolite, 92, 398 selected area, surface reaction dynamics, 93, 321 High-resolution electron energy-loss spectroscopy TiO₂-supported Mo and Co-Mo catalysts, 92, 340 methyne intermediates, formation by hydrogenation Framework of surface carbon on Ru(001), 94, 51 zeolite, isomorphous substitution in, 93, 451 High-resolution electron microscopy Frequency response method metal clusters supported on spinel Al₂O₃, 94, 313 zeolite diffusivity of hydrocarbon, 93, 176 HREELS, see High-resolution electron energy-loss Furan spectroscopy oxidation activity and selectivity on supported and HREM, see High-resolution electron microscopy unsupported V₂O₅ catalysts, 95, 482 Hydrocarbons, see also Aromatic hydrocarbons selective oxidation to maleic anhydride over Ni C₄, conversion to maleic anhydride by NiMoO₄ se-MoO₄ catalysts with excess MoO₃, 95, 147 lective oxidation catalysts with excess MoO3 preparation and characterization, 95, 120 gaseous phase decarbonylation, Pd/Al₂O₃ deactivaselective oxidation of tion, 91, 254 1,3-butadiene and furan, 95, 147 1-butene, 95, 137 conversion catalyst Pt/Al₂O₃, Re and S effects, 96, G n-C₄, reactions over Ru: alkyl and π -allyl intermedi-Gas ates, 92, 232 environment, effects on Ag dispersion, 93, 288 production Gas chromatography by Fe/SiO₂ catalyst, diethylamine effect, 95, reversed-flow, catalytic hydrodesulfurization of thiophene, 94, 376 from methanol over ZSM-5 zeolite, role of aro-Gasification matic hydrocarbons: letter to editor, 93, 205 steam, see Steam gasification Gold particle size sensitivity, 96, 82 surfaces, K-covered: O2 adsorption, 96, 420 strong metal-support interaction effects, 94, Gold-ruthenium, see Ruthenium-gold Grain unsaturated, hydrogenation by rare earth metal catmorphology, vanadium pentoxide, 91, 361 alysts, **96,** 139 Graphite zeolite diffusivity, frequency response method, 93, catalytic gasification by iron, 95, 101 176 steam gasification below 900 K catalyzed by KOH Hydrochlorination and transition metal oxide, 96, 234 vapor phase, of acetylene, 96, 292 Gravimetry Hydrocracking pyridine on MoO₃/Al₂O₃, catalyst acidic properties commercial catalyst, cumene disproportionation: upon reduction in hydrogen, 94, 408 hydrogen effects, 92, 187 Hydrodeoxygenation H hydroxy, methoxy, and methyl phenols with MoO₃-NiO-Al₂O₃ catalyst, 96, 535 Heat of adsorption Hydrodesulfuration H₂ adsorption on Pt catalysts, direct measurement, CoMo catalysts, 59Co NMR study, 96, 189 95, 57 CoO/Al2O3 catalysts, temperature-programmed suln-Heptane fiding and reduction, 96, 122 and branched isomer cracking on acidic zeolites, CoO-MoO/Al₂O₃, temperature-programmed reduc-

tion, 93, 38

product distribution, 94, 445

CoO-MoO₂/Al₂O₃, temperature-programmed reducand oxygen particles, interactions with Pd particles tion, 96, 381 for Pd/SiO₂ catalysts, 94, 478 Group VIII metal promoter role, 91, 308, 318 role in inverse Arrhenius plots, 91, 181 initial transformations, Ni role, 91, 64 sorption of supported Pd catalysts, 96, 51 thiophene spillover in Pt/γ -Al₂O₃ system, **95**, 296 activity and selectivity over Mo/TiO₂ catalysts, from Ru to Cu in Cu/Ru bimetallic system, 95, **95**, 33 catalysis by Chevrel phase compounds, 93, 375 321 titration of Ag catalysts, 93, 288 reversed-flow gas chromatography, 94, 376 uptake suppression of Pt and Ir on TiO2-Al2O3 Hydroformylation propylene, on RhNaX and RhNaY: in situ Fourier mixed-oxide supports, 95, 473 transform infrared spectroscopy, 96, 574 Hydrogenation acetophenone asymmetric transfer reaction, role of Hydrogen Rh(I) complexes containing chiral diphosphines adsorbed species during CO hydrogenation over unsupported Ru, Ni, and Rh, 94, 385 as catalytic precursors, 94, 292 adsorption on alicyclic ketones on iron, mechanism, 93, 75 alkenes and alkynes over polymer-bound Pd(II) fused iron catalyst, characterization with in situ complexes, **92**, 327 laser Raman spectroscopy, 95, 325 aromatic compounds in sulfided Ni-W/y-Al₂O₃-cat-Pt catalysts, heat of adsorption direct measurealyzed synthetic crude distillates, 95, 155 ment, 95, 57 Ru-Au/SiO₂ catalysts, 95, 271 atmospheric, organic fragments over Pt(III) suratmosphere, reduction behavior of supported Fe faces, 92, 240 catalysts, 96, 261 benzene and 1-hexene, properties of γ-Al₂O₃-supported chemisorption on alumina, properties, 94, 558 Pd-Rh bimetallic catalysts, 95, 167 Cu-Ni alloy powders, 95, 346 kinetics, comment, 94, 319; reply, 94, 322 Ni, effects of varying titania surface coverage, 95, reduced nickel hydromolybdate, 91, 356 1-butene, catalytic activity of Chevrel phase comreduced nickel hydromolybdate, 91, 356 pounds, 93, 375 Rh/TiO₂ catalysts, 94, 300 carbon on Ni: support effects on kinetics, 91, 78 Ru(0001) surface, effects of added Cu, 94, 576 supported Ru, effects of surface structure, 93, by γ-Al₂O₃-supported Os catalysts, particle size 368 effects, 95, 370 and CO by carbon-supported Fe-Ru catalysts, 91, 338 interactions with Pd/SiO₂ and Pd/La₂O₃, 96, 88 catalyst preparation from metal clusters, 91, selective olefin synthesis with Na[Ru₃H(CO)₁₁] 272 supported on metal oxides, 95, 293 on Co catalysts, 95, 527 and CO₂ over Rh/TiO₂ effect of variation in supcoadsorption with CO port electric properties, 95, 578 on Ni, effect of titania adspecies, 96, 597 coverages of carbon- and hydrogen-containing on Ni/SiO₂, structural sensitivity, 96, 210 and CO₂, surface interaction over supported Pd catspecies on Ru, 91, 142 alyst, 95, 567 gold effect, 93, 256 on inorganic oxide-attached Mo(II)-monomer effect on catalysts, selective ethane formation, 96, cumene disproportionation on commercial hydrocracking catalyst, 92, 187 613 ethylene catalytic decomposition on Ni, 92, 177 iron-manganese oxide catalysts, 92, 98, 109 methanol production on ThO₂ catalyst, 95, 385 Ru(III)-sulfonated linear polystyrene ionomers 94, 531 over Mo(100) single crystals and polycrystalline foils, 94, 60 high-temperature treatment of supported Pt cataon Ni/TiO2 and Ni/Ti2O3 catalysts, 96, 491 lysts, letter to editor, **92**, 193; reply, **92**, 196 -H₂O deuterium exchange on Ni, metal/oxide supproduct distribution, effects of structure sensitivity **92**, 376 port effects, 95, 1 over Rh, deuterium isotope effects, 95, 317 interaction with adsorbed CO on Pt/Cab-O-Sil, inon Rh/γ-Al₂O₃ and Rh/ZrO₂ catalysts, **96**, 106 frared spectroscopy, 92, 388 over Rh/TiO₂ molecular, absence in 1-butene isomerization on y-Al₂O₃-supported Group VIII metals, 93, 161 alkali promotion effect, 95, 435 NO reduction over Rh/SiO₂, 92, 247 analysis with ethylene addition, 92, 416 oxidation on Ni, 93, 417 over Ru, support effects, 96, 23

Hysteresis

during high-pressure ammonia synthesis, 94, 563

```
over Ru/Al<sub>2</sub>O<sub>3</sub>, effect of K, B, and P additives, 95,
    over SiO2-supported Ni, Ru, Rh, and Pd: addition
                                                              Imaging atom-probe mass spectroscopy
                                                                Rh field-emitter surface oxidation, 92, 167
       of probe reactants, 96, 396
                                                              Infrared doublet
    on supported and unsupported Ru, 93, 1
    on Y-zeolite-supported Ru, 91, 283
                                                                CO desorption-adsorption, production on Pt/Cab-
  competitive, styrene and \alpha-methylstyrene over Rh/
                                                                     O-Sil, 92, 388
       AlPO<sub>4</sub> catalysts, 94, 1
                                                              Infrared spectroscopy
                                                                adsorbed formate on supported Rh catalysts, 91, 327
  cyclohexane, gas-phase reaction turnover rate on
       unsupported Pt powder, 94, 225
                                                                ammonia-CO and pyridine-CO interaction on
  enantioselective, Ni/SiO<sub>2</sub> catalysts: effects of prepa-
                                                                     MgO-CoO solid solutions, 96, 586
                                                                CO
       ration conditions, 96, 429
  NiCH, rate-determining step, comment, 96, 299; re-
                                                                   with ammonia preadsorbed on MgO, 93, 331
       ply, 96, 300
                                                                   carbonyl-derived catalysts, magnetic properties,
  propylene on Mo/Al<sub>2</sub>O<sub>3</sub>, 93, 388
                                                                     95, 527
                                                                   dissociation on NaX-zeolite-supported Rh, 94,
  Rh(I) compounds and polymer-supported Rh(I) cat-
       alysts, X-ray photoelectron spectroscopy, 94,
                                                                     297
                                                                CO adsorbed on
       335
  surface carbon on Ru(001), formation of methyne
                                                                   oxide catalysts, lateral interactions, 94, 10
                                                                   Pd/SiO<sub>2</sub> catalyst for methanol synthesis, 95, 465
       intermediates, 94, 51
  unsaturated hydrocarbons by rare earth metals, cat-
                                                                   Pt/Cab-O-Sil, interaction with hydrogen and oxy-
       alytic properties, 96, 139
                                                                     gen, 92, 388
                                                                 CO adsorption and coadsorption with H2 on Ni/SiO2
Hydrogen cyanide
  synthesis for CH<sub>4</sub> and NH<sub>3</sub> on Ru, 91, 116
                                                                     catalysts, structural sensitivity, 96, 210
Hydrogen-deuterium
                                                                 ethylidyne surface species on Pd/Al<sub>2</sub>O<sub>3</sub>, 96, 1
                                                                 H-ZSM-5 zeolite, framework hydroxyl groups, 95,
  exchange, temperature-programmed: heteropoly
                                                                     609
       compounds, 91, 93
                                                                 methanol decomposition on ZnO, 95, 617
Hydrogenolysis
  alkanes on Mo(O)/Al<sub>2</sub>O<sub>3</sub> catalysts, mechanism, 93,
                                                                 NO
                                                                   adsorption on Pt/Al<sub>2</sub>O<sub>3</sub>, 91, 208
  anisole on sulfided CoMo/Al2 and NiMo/SiO2-Al2O3
                                                                   reduction by H<sub>2</sub> over Rh/SiO<sub>2</sub>, 92, 247
       catalysts, effect of catalyst acidity, 94,
                                                                 pyridine on MoO<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub>, catalyst acidic properties
                                                                     upon reduction in hydrogen, 94, 408
       230
  cycylopropane, over Ni-Cu/SiO<sub>2</sub>, 94, 289
                                                                ZnO surface properties, CO adsorption and CO/D<sub>2</sub>
                                                                     interaction, 92, 79
  1,3-dioxanes on Pt, 95, 605
  methylcyclopropane
                                                              Insertion
     activity and selectivity patterns for Pd/SiO2 cata-
                                                                aluminum, in high-SiO<sub>2</sub> zeolite frameworks, 93, 471
                                                              Intermediates
       lysts, comparison with Pt/SiO<sub>2</sub>, 94, 478
                                                                 alkyl and \pi-allyl, in n-C<sub>4</sub> hydrocarbon reactions
     properties of Pd-Rh bimetallic catalysts, 95,
       167
                                                                      over Ru, 92, 232
     on Pt/Al<sub>2</sub>, poisoning by CO, 94, 203
                                                                 carbonium ions, over SiO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> and acidic zeo-
                                                                     lites, 92, 355
     on Pt/TiO<sub>2</sub>, poisoning by CO, 94, 218
  particle size sensitivity in hydrocarbon reactions,
                                                                 reaction, ethylene oxidation on Ag(111) single crys-
                                                                      tal surface, 92, 364
       96, 82
  propane and cyclopropane on Mo/Al<sub>2</sub>O<sub>3</sub>, 93, 388
                                                                 surface
Hydrogen sulfide
                                                                   in comparative Ni- and Pt-catalyzed methanation,
  and WS<sub>2</sub>, S<sup>35</sup> exchange, 96, 544
                                                                     94, 306
Hydrogen/water
                                                                   in methanol synthesis, chemical trapping by
  gas treatment, effect on water-gas shift over
                                                                     amines, 95, 423
       magnetite particles on graphite, 91, 167
                                                              Ionomers
                                                                sulfonated polystyrene, Ru reactions in, 94, 531
Hydrometallation
                                                              Ion scattering spectroscopy
  catalytic, nickel porphyrins, 93, 100, 122, 135
                                                                hydrotreating catalysts, structure, 95, 309
Hydrotalcite
                                                              Iridium
  thermally activated, catalytic reactions, 94, 547
                                                                 Al<sub>2</sub>O<sub>3</sub>-supported, sulfur chemisorption thermody-
Hydroxyl groups
                                                                     namics, 94, 543
  framework, of H-ZSM-5 zeolites, location, 95, 609
                                                                SiO<sub>2</sub>- and γ-Al<sub>2</sub>O<sub>3</sub>-supported, redispersion with chlo-
Hydroxyphenols
                                                                     rine-containing gases, 96, 154
  hydrodeoxygenation with MoO<sub>3</sub>-NiO-Al<sub>2</sub>O<sub>3</sub> cata-
                                                                 TiO2-Al2O3 mixed oxide-supported, chemisorption
       lyst, 96, 535
```

properties and SMSI formation, 95, 473

Iridium-platinum, see Platinum-iridium

Iron

γ-Al₂O₃- and magnesium hydroxycarbonate-supported, reduction behavior in CO or H₂ atmospheres, 96, 261

Al₂O₃-supported

in situ Mössbauer spectroscopic characterization,96, 314

role of surface phenomena and chemical interactions, **94**, 239

and Al_2O_3 surfaces, potassium migration: Auger electron spectroscopy, **92**, 17

carbon deposition by acetone/CO₂ catalytic decomposition, conversion electron Mössbauer spectroscopy, **94**, 360

catalysts, Al₂O₃-CaO-K₂O-promoted, high-pressure ammonia synthesis, hysteresis, **94**, 563

-exchanged mordenite, behavior toward CO reduction, **96**, 182

FeOs₃ clusters, in catalyst preparation for CO hydrogenation, **91**, 272

filamentous carbon formation

mechanism, 96, 468

morphology, 96, 481

thermodynamics, 96, 454

fused

alicyclic ketone gas-phase hydrogenation, mechanism, 93, 75

alkali-promoted catalyst for Fischer-Tropsch synthesis: *in situ* laser Raman spectroscopy, **95**, 325

graphite catalytic gasification, 95, 101

role in multicomponent molybdate catalysts for propylene selective oxidation, **95**, 209

silica gel-supported, local temperature rises, 91, 185

SiO₂-supported, hydrocarbon and alcohol production, diethylamine effect, **95**, 602

ThO₂-supported, *in situ* Mössbauer spectroscopic characterization, **96**, 314

TiO₂-supported, CO/H₂ reaction over: oxidation effect, **96**, 408

Iron-antimony

system, excess antimony role as promoter in selective oxidation, **91**, 85

Iron carbide

catalyst, local temperature rises, **91**, 185 Iron–iridium

SiO₂-supported bimetallic catalyst, structure: Mössbauer and X-ray photoelectron spectroscopy, **96**, 58

Iron-manganese oxide

CO catalysts

carburization, 92, 109

structure, 92, 98

Iron-molybdenum sulfide

catalysts for MoS₂ hydrotreating, catalytic and physicochemical properties, **94**, 310

Iron-nickel, see Nickel-iron

Iron nitride

silica-supported

characterization, 91, 231

promotion effects of potassium and nitrogen, 91, 241

Iron oxide

graphite-supported, water-gas shift over: pretreatment effects, 91, 167

Iron-palladium

SiO₂-supported bimetallic catalyst, structure: Mössbauer and X-ray photoelectron spectroscopy, **96.** 58

Iron-platinum

SiO₂-supported bimetallic catalyst, structure: Mössbauer and X-ray photoelectron spectroscopy, **96.** 58

Iron-rhodium

SiO₂-supported bimetallic catalyst, structure: Mössbauer and X-ray photoelectron spectroscopy, **96.** 58

Iron-ruthenium

carbon-supported, preparation from mixed-metal carbonyl clusters, 91, 338

SiO₂-supported, structure: Mössbauer and X-ray photoelectron spectroscopy, **96**, 58

Isobutene

oligomerization with benzyl sulfonic acid siloxane catalyst, 94, 187

Isocyanate

formation on MgO, ir emission spectrum, 93, 331 Isomerization

n-butane by polymer-supported superacids, **96**, 347

but-I-ene, catalyst precursors: Al₂O₃-supported tetraosmium cluster anions, **94**, 195

butenes, catalysis on crystalline zirconium phosphates, **94**, 491

catalytic, 1-hexene on H-ZSM-5, 92, 398

ethylene oxide on single-crystal Ag(111): effects of oxygen and cesium, 93, 92

n-heptane cracking on acidic zeolite, product distribution, 94, 445

methylpentenes over Y catalyst, mechanism, 92,

paraffin by polymer-supported superacids, **96**, 347 stereoselective, 1,3-dioxanes on Pt, **95**, 605

Isopropanol

decomposition on Cu/γ -Al₂O₃, **91**, 69

photocatalytic dehydrogenation on Pt/TiO₂ catalysts, **91**, 293

Isopropyl alcohol

dehydration over copper salts of 12-tungstophosphoric acid, 93, 224

Isotope

effect, kinetic, see Kinetic isotope effect

equilibration reaction of N₂, turnover rate on Ru/ alkaline earth, 92, 305

exchange, oxygen: in perovskite-type mixed oxides, **93,** 459

labeling

CO₂ role in methanol synthesis on Cu–Zn oxide catalyst, **96**, 251

methanol dehydrogenation over copper, 91, 197

ISS, see Ion scattering spectroscopy

Κ

Ketones

alicyclic, hydrogenation on iron, mechanism, 93, 75 Kieselguhr

supported Co catalyst, low-temperature methanation and Fischer-Tropsch activity, **94**, 566 Kinetic isotope effect

deuterium, methanol reaction with Ni(111) surface, 92, 25

Kinetic power law

methanation rate over Ni/γ-Al₂O₃, 92, 312

Kinetics

acetaldehyde formation over Cu(II) and Co(II) ionexchanged Y-type zeolite catalysts for ethanol oxidation, 93, 303

carbon hydrogenation on Ni, support effects, 91, 78 catalytic deactivation and catalyst poisoning reaction, 95, 447

methane oxidation with N₂O on MoO₃/SiO₂, 91, 263 methanol

decomposition on Ni(111), 92, 25

and methane synthesis over Pd/SiO₂ and Pd/ La₂O₃, 91, 104

nonlinear, in catalytic oxidation reactions, **96**, 326 NO reduction by H₂ over Rh/SiO₂, **92**, 247

Pd-Al₂O₃ deactivation in furfural decarbonylation, 91, 254

pseudo-mass-action and pseudomonomolecular, constraints on multicomponent catalytic systems, 94, 148

steady state, and H₂ oxidation on Ni, 93, 417 sulfur-tolerant methanation catalyst, 93, 409

V₂O₅-MoO₃ catalyst reduction, electron spin resonance, **96**, 32

L

Lanthanum

 $La_2Cu_{1-x}Ni_xO_4$ (0 $\leq x \leq$ 1), solid solution: N_2O decomposition, 93, 279

LaNiO₃ surface properties: reduction and oxygen adsorption, kinetics, **93**, 83

perovskite-type LaFeO and LaCoO₃ mixed oxides, effects of Sr²⁺ and Ce⁴⁺ substitution for La³⁺, **93**, 459

support for Pd catalyst, H₂ and O₂ interactions, 96,

Laser Raman spectroscopy

WO₃ on Al₂O₃, characterization, 91, 1

Leaching

kinetics, and pore diffusion, 91, 25

Lewis acids

metal-halide, and macroporous sulfonated poly(styrene-divinylbenzene) reaction: paraffin isomerization catalyzed by polymer-supported superacids, **96**, 347

Low-energy ion scattering spectroscopy

Cu/Al₂O₃ catalysts, surface properties, characterization, **94**, 514

Luminescence

metal poisoning effects on high-activity fluid cracking catalyst, **96**, 363

М

Magnesia

support for

Pd catalyst, CO₂ adsorption and surface interaction with H₂, 95, 567

Ru-Au bimetallic catalyst, metal dispersion measurement with stepwise chemisorption and gas titration, 95, 271

Magnesium hydroxycarbonate

support for Fe catalysts, reduction behavior in CO or H₂ atmospheres, **96**, 261

Magnesium oxide

with preadsorbed ammonia, CO reaction: ir emission study, 93, 331

Magnesium oxide-cobalt oxide

solid solutions, ammonia-CO and pyridine-CO interaction on: infrared spectra, 96, 586

Magnetic properties

Ni catalysts, support effects, 93, 270

Magnetite

particles, graphite supported: water-gas shift over, **91,** 167

Maleic anhydride

from *n*-butane oxidation by V-P-O catalysts, **92**, 216

synthesis from C₄ hydrocarbon conversion by NiMoO₄ selective oxidation catalysts with excess MoO₃

preparation and characterization, 95, 120

selective oxidation of

1,3-butadiene and furan, 95, 147 1-butene, 95, 137

Manganese oxide

promoter role in Rh/SiO₂ catalyst, 93, 340

Manganese oxide-iron, see Iron-manganese oxide Metal

catalysts

etched, morphology, 92, 136

supported, structure, 92, 211

clusters on spinel Al₂O₃, high-resolution electron microscopy, **94**, 313

dispersion in Pt/TiO₂ catalyst preparation, **92**, 11 Group VIII

γ-Al₂O₃ supported, 1-butene isomerization, activity and selectivity, 93, 161

promoter in MoS₂ and WS₂ hydrotreating catalysts, 91, 308, 318

interactions with adsorbed organic compounds, infrared spectroscopy, **92**, 388

rare earth, see Rare earth metals

segregation in supported bimetallic catalysts, 91, 272

transition, see Transition metals

Metal carbonyl

clusters, mixed: for carbon-supported Fe-Ru catalysts, 91, 338

Metal chloride catalysts, supported: correlation of catalytic activity, 96, 292 Metal oxides methoxy group chemisorption, CH stretching band shift, 92, 173 support for Na[Ru₃H(CO)₁₁] catalyst for selective olefin synthesis, 95, 293 Ni catalyzed H₂-H₂O deuterium exchange, support effects, 95, 1 Metal-support interactions in aluminum phosphate- and Nb-supported Ni catalysts, models, 96, 202 carbon hydrogenation on Ni, 91, 78 Cu/Al₂O₃ catalysts, surface properties, spectroscopic characterization, 94, 514 effect on activity and olefin selectivity, 91, 283 metal/oxide support effects in H2-H2O deuterium exchange on Ni, 95, 1 Ni/TiO₂, **95**, 587; **96**, 597 precipitated Ni/SiO2 catalysts for enantioselective hydrogenation, effects of preparation conditions, 96, 429 Pt/TiO₂, methylcyclopropane hydrogenolysis poisoning by CO, 94, 218 strong Al₂O₃-supported iron catalysts, **94**, 239 effects in C₆ hydrocarbon reactions, 94, 400 filamentous carbon growth on TiO₂-treated Ni surfaces, 93, 312 Ni catalysts behavior of phosphate and niobia supports, 93, supported on niobia-silica surface phase oxide, 95, 260 Ni/TiO₂ and Ni/Ti₂O₃ catalysts, CO hydrogenation and adsorption, 96, 491 and normal, effects in Pt and Ni/TiO2 catalysts, 95, 539 Pd catalysts, supported: temperature-programmed reduction and temperature-resolved sorption, **96**, 51 Pt and Ir on TiO2-Al2O3 mixed-oxide supports, chemisorption properties, 95, 473 Pt/TiO₂ catalysts models, 93, 216 small-angle X-ray scattering, 92, 199 Rh/γ-Al₂O₃ and Rh/ZrO₂ catalysts, and CO hydrogenation, **96**, 106 Rh/TiO₂ system at high metal loading, 94, 300 transmission electron microscopy, 94, 422 on TiO2-deposited metal catalysts, electronic effects, comment, 94, 581; replies, 94, 586, 587

propylene on Mo/Al₂O₃, 93, 388

carbon-supported Fe-Ru catalysts, 91, 338

Methanation

gold effect, 93, 256

kinetics, Ni-Fe alloy particles supported on TiO₂ and Al₂O₃, 91, 11 low-temperature, over supported Ru, Ni, and Co catalysts, 94, 566 methyne intermediates, formation by hydrogenation of surface carbon on Ru(001), 94, 51 Ni-catalyzed, comment, 96, 299; reply, 96, 300 Ni- and Pt-catalyzed, comparison with transient-kinetic methods, 94, 306 Pd/rare earth oxides, 95, 227 over Pt/CeO₂, Pt catalytic activity, 96, 285 reaction over Ni, 92, 312 with sulfur-tolerant catalyst, kinetics, 93, 409 Methane decomposition and stream reforming over SiO2-supported Ni-Cu catalysts, 96, 517 formation from Pd/rare earth oxide catalysts, 95, 227 and NH₃ reactions in HCH synthesis on clean Rh, 91, 116 partial oxidation with N2O on MoO₃/SiO₂, kinetics, 91, 263 over V₂O₅/SiO₂ catalyst, 94, 501 steam reforming, formaldehyde intermediate, 95, synthesis over Pd/SiO₂ and Pd/La₂O₃, kinetics, 91, 104 Methanol carbonylation by Co, Rh, and Co-Ru, cylindrical internal reflectance in situ infrared spectroscopy, 95, 21 conversion to hydrocarbons over ZSM-5 zeolite, aromatic hydrocarbon role, letter to editor, 93, 205; reply, 93, 207 on molybdenum and tungsten heteropoly compounds, 91, 132 decomposition catalytic, on Ni foil: chlorine effect, 94, 142 over Cr₂O₃, surface formate-ion behavior as reaction intermediates, 94, 353 on Ni(111), 92, 25 on ZnO, infrared and programmed desorption study, **95**, 617 dehydrogenation to formaldehyde, oxidation role, 92, 127 to methyl formate over Cu, mechanism, 91, 197 over 12-tungstophosphoric acid, mechanism: photoacoustic Fourier-transform infrared spectroscopy, 95, 108 formation over Pd/rare earth oxide catalysts, 95, 227 oxidation over ferric molybdate and MoO₃, electron microscopy, **94**, 79 and grain morphology of V2O5, 91, 361

on K₂SO₄-promoted unsupported V₂O₅ catalysts,

photo-oxidation with MoO₃/TiO₂, catalyst structure

production from CO hydrogenation on ThO₂, 95,

and reaction selectivity, 94, 108

93, 360

```
synthesis
                                                           Microstructure
    over Cu-Cr oxide, 92, 119
                                                              ferric molybdate and MoO3 catalysts for methanol
    over Cu-Group IV metal amorphous alloys as
                                                                  oxidation, 94, 79
       catalyst precursor, 96, 296
                                                             oxychlorination catalyst, supported liquid phase,
    on Cu-Zn oxide catalyst, CO2 role: isotope label-
                                                                  93, 23
       ing study, 96, 251
                                                           Migration
    low-temperature, Cu/Zn/Al mixed-oxide catalytic
                                                             potassium on Fe and Al<sub>2</sub>O<sub>3</sub> surfaces, 92, 17
       behavior, 94, 120
                                                           Mineral
    on mixed metal oxide catalysts, adsorbed surface
                                                              surfaces, epoxide rearrangements, 92, 291
       species characterization with in situ Fourier
                                                           Molecular sieves
       transform infrared spectroscopy, 94, 175
                                                              borosilicate, boron determination, 91, 352
    model, 92, 79
                                                           Molybdate
    over Pd/SiO<sub>2</sub> and Pd/La<sub>2</sub>O<sub>3</sub>, kinetics, 91, 104
                                                              multicomponent catalysts for propylene selective
    precursors of Cu-zinc oxide catalysts, 93, 442
                                                                  oxidation, role of iron, 95, 209
    SiO<sub>2</sub>-supported Pd, adsorbed CO and catalyst per-
                                                           Molybdate-nickel, see Nickel-molybdate
       formance, relationship, 95, 465
                                                           Molybdena
    surface intermediates, chemical trapping by
                                                              Al<sub>2</sub>O<sub>3</sub>-supported
       amines, 95, 423
                                                                acid sites on, infrared and gravimetric studies of
Methoxy groups
                                                                  adsorbed pyridine, 94, 408
  chemisorbed on metal oxides, CH stretching band
                                                                preparation by equilibrium adsorption, character-
       shift, 92, 173
                                                                  ization, 95, 501
Methoxyphenols
                                                             sulfided, Al<sub>2</sub>O<sub>3</sub>-supported
  hydrodeoxygenation with MoO3-NiO-Al2O3 cata-
                                                                activity and structure, 96, 276
       lyst, 96, 535
                                                                characterization and valence states below Mo4+,
Methylchlorosilane
                                                                  92, 155
  formation by Cu<sub>3</sub>Si, surface analysis, 95, 396
                                                             TiO<sub>2</sub>-supported, thiophene hydrodesulfurization ac-
  synthesis over Cu-Si, 93, 68
                                                                  tivity and selectivity, 95, 33
Methylcyclohexane
                                                           Molvbdena-silica
  dehydrogenation over sulfided Pt-Re/Al<sub>2</sub>O<sub>3</sub> reform-
                                                             methane oxidation with N2O, kinetics, 91, 263
       ing catalyst, reaction kinetics, 96, 507
                                                           Molybdenum
2-Methylcyclohexanol
                                                             Al<sub>2</sub>O<sub>3</sub>-supported
  probe molecule for surface reactions on Al-P-O
                                                                alkane hydrogenolysis, mechanism, 93, 399
       catalysts, 96, 242
                                                                characterization by low-temperature oxygen che-
Methylcyclopropane
                                                                  misorption, 92, 432
  hydrogenolysis
                                                                (100)-oriented single crystals and polycrystalline
    activity and selectivity patterns for Pd/SiO<sub>2</sub> cata-
                                                                  foils, CO hydrogenation over, 94, 60
      lysts, comparison with Pt/SiO<sub>2</sub>, 94, 478
                                                                propane hydrogenolysis, 93, 388
    poisoning by CO
                                                             SiO<sub>2</sub>-supported, partial oxidation of ethane to ethyl-
      on Pt/Al<sub>2</sub>O<sub>3</sub>, 94, 203
                                                                  ene and acetaldehyde, 94, 37
      on Pt/TiO<sub>2</sub>, 94, 218
                                                             states in hydrodesulfurization, 93, 375
    properties of Pd-Rh bimetallic catalysts, 95, 167
                                                             TiO<sub>2</sub>-supported, preparation and characterization
Methyl formate
                                                                  by Raman and Fourier transform infrared spec-
  from methanol dehydrogenation over copper, mech-
                                                                  troscopy, 92, 340
      anism, 91, 197
                                                           Molybdenum-cobalt, see Cobalt-molybdenum
Methyl pentenes
                                                           Molybdenum-copper, see Copper-molybdenum
  isomerization over Y catalyst, 92, 355
                                                           Molybdenum dioxide
Methylphenols
                                                             promoter role in Rh/SiO<sub>2</sub> catalyst, 93, 340
  hydrodeoxygenation with MoO3-NiO-Al2O3 cata-
                                                           Molybdenum disulfide
       lyst, 96, 535
                                                             hydrotreating catalyst, Group VIII promoter, 91,
α-Methylstyrene
                                                                  308, 318
  and styrene, individual and competitive hydrogena-
                                                             single crystal edge planes, reactivity, 92, 56
       tion by AlPO<sub>4</sub>-supported Rh catalysts, 94, 1
                                                           Molybdenum heteropoly compounds
Methyne
                                                             methanol and ethanol conversions on, 91, 132
  intermediates, formation by hydrogenation of sur-
                                                           Molybdenum(II)-monomer
       face carbon on Ru(001), 94, 51
                                                             inorganic oxide-attached catalysts, selective ethane
Microprobe
                                                                  formation by CO hydrogenation, 96, 613
  etched wire profiling, 92, 136
                                                           Molybdenum-nickel, see Nickel-molybdenum
```

Molybdenum oxide-nickel oxide-alumina

hydrodeoxygenation of hydroxy, methoxy, and methyl phenols, **96**, 535

Molybdenum sulfide

catalysts, unsupported: preatreatment effects on sintering, stoichiometry, and O₂ chemisorption, **95**, 455

reduced, thiophene hydrodesulfurization, **93**, 375 Molybdenum sulfide-iron, *see* Iron-molybdenum sulfide

Molybdenum trioxide

Al₂O₃-supported, temperature-programmed sulfiding, **92**, 35

methanol oxidation, electron microscopy, **94**, 79 methanol oxidative dehydrogenation to formaldehyde over, **92**, 127

structure sensitivity, in propylene mild oxidation, **93,** 467

TiO₂-supported, methanol photo-oxidation, catalyst structure and reaction selectivity, **94**, 108

Mordenite

n-butylamine and NH₃, temperature-programmed desorption, **96**, 288

Fe-exchanged, behavior toward CO reduction, 96, 182

paraffin cracking selectivity, 93, 246

Mössbauer spectroscopy

conversion electron, see Conversion electron Mössbauer spectroscopy

in situ

Fe/Al₂O₃ and Fe/ThO₂, characterization, **96**, 314 ferric molybdate rearrangement in partial propylene oxidation, **95**, 289

Ni-Fe alloy particles supported on TiO₂ and Al₂O₃, methanation kinetics, **91**, 11

SiO₂-supported

bimetallic catalysts, structure, **96**, 58 Fe, local temperature rises, **91**, 185 Fe nitride, **91**, 231

Ν

Nafion, see Polyfluorocarbon sulfonic acid Neutron

attenuation technique for coke profile determination in situ, 96, 146

Nickel

adsorption of H₂ and CO, effects of varying titania surface coverage, **95**, 587

Al₂O₃-supported, low-temperature methanation and Fischer-Tropsch activity, **94**, 566

α-Al₂O₃-supported, steam reforming of methane, formaldehyde intermediate, **95**, 313

γ-Al₂O₃-supported particles in H₂ atmosphere, sintering behavior, **96**, 12

aluminum phosphate- and Nb-supported, metalsupport interactions, **96**, 202 carbon hydrogenation, support effects on kinetics, 91. 78

catalysts, chemisorptive and magnetic properties: support effects, 93, 270

catalytic decomposition of CH₃OH, chlorine effect, 94. 142

-catalyzed methanation reaction, rate-determining step, comment, **96**, 299; reply, **96**, 300

deactivation during carbon steam gasification, 95, 71 effects on catalytic properties of high-activity fluid cracking catalyst, 96, 363

ethylene catalytic decomposition on, effect of hydrogen, 92, 177

and hexane, neohexane, and methylcyclopentane in hydrogen mixtures, particle size sensitivity of catalytic reactions, 96, 82

 H_2 oxidation, 93, 417

metal oxide-supported, support effects in H_2 - H_2O deuterium exchange, **95**, 1

methanation reaction over, 92, 312

niobia-silica surface phase oxide-supported, metalsupport interactions, **95**, 260

-promoted catalysts, catalytic and physicochemical properties, **91**, 318

and Pt-catalyzed methanation, comparison with transient-kinetic methods, 94, 306

Raney, surface analysis, 93, 55

role in hydrodesulfurization catalyst initial transformation, 91, 64

SiO₂-supported

CO adsorption and H₂/CO coadsorption, 96, 210
 CO disproportionation, kinetics and nature of deposited carbon, 95, 13

CO hydrogenation over, addition of probe reactants, **96**, 396

for enantioselective hydrogenation, effects of preparation conditions, **96**, 429

and Nb₂O₅-supported, CO adsorption: role of carbonyl formation and support effects, **94**, 343 supported

alkali promoters on, effect of support, preparation, and alkali concentration, 93, 152 metal-support interactions, 93, 201

surfaces treated with TiO₂, effect on carbon growth,

93, 312
 TiO₂-supported, metal content and temperature effects on photocatalytic cyclopentane-deute-

rium isotopic exchange over, **95**, 539
TiO₂- and Ti₂O₃-supported, CO hydrogenation and adsorption, **96**, 491

titania-supported, effects of titania adspecies on CO and H₂ coadsorption, **96**, 597

unsupported, carbon and hydrogen adspecies during CO hydrogenation, **94**, 385

Nickel(111)

methanol decomposition, reaction kinetic measurements, **92**, 25

136

reduction by H₂ over Rh/SiO₂, 92, 247

Nitrogen Nickel-copper, see Copper-nickel N₂ activation over Ru/alkaline earth, 92, 305 Nickel hydromolybdate promotion, effects on activity and selectivity of iron reduced, hydrogen chemisorption and benzene hynitride with silica support, 91, 241 drogenation, 91, 356 Nitrous oxide Nickel-iron alloy particles, TiO₂ and Al₂O₃-supported, methanadecomposition reaction, determination of Cu-Ni alloy powder tion kinetics, 91, 11 surface composition, 95, 346 Nickel-molybdate on solid solution $La_2Cu_{1-x}Ni_xO_4$ (0 $\leq x \leq 1$), 93, selective oxidation catalysts with excess MoO₃ for C₄ hydrocarbon conversion to maleic anhydride 279 methane oxidation preparation and characterization, 95, 120 on molybdena-silica, kinetics, 91, 263 selective oxidation of 1,3-butadiene and furan, 95, 147 partial, over V2O5/SiO2 catalyst, 94, 501 1-butene, 95, 137 Nuclear magnetic resonance ⁹Be, chemical shifts of beryllium silicates with zeo-Nickel-molybdenum lite-type structure, 94, 508 Al₂O₃-supported catalyst, large-pore: for upgrading coal liquids, 95, 406 alkyl intermediates on Ru/SiO2, characterization, electron spin resonance, 91, 308 hydrodesulfurization catalysts, 91, 64 carbonaceous species on Ru catalysts, 93, 1 sulfided catalysts, SiO₂-Al₂O₃ supported: catalyst acidity effect on anisole hydrogenolysis, 94, 230 ⁵⁹Co, CoMo hydrodesulfuration catalysts, **96**, 189 Nickel oxide 0 and H₂O, effects on surface structure of NiO-MoO₃/Al₂O₃ catalyst, 95, 414 Nickel oxide-molybdenum trioxide Offretite Al₂O₃-supported catalyst, H₂O and NiO effects on paraffin cracking selectivity, 93, 246 surface structure, in situ Raman spectroscopy, synthetic crude, see Synthetic crude 95, 414 Nickel porphyrins Olefin isomerization on zeolites, 92, 398 catalytic hydrodemetallation Oligomerization acid-base modification of selectivity, 93, 135 porphyrin structure and reactivity, 93, 100 isobutene, with benzyl sulfonic acid siloxane catalyst, 94, 187 pyridine and sulfiding effects, 93, 122 Nickel-tungsten Organic compounds adsorbed, interactions with metals: infrared specelectron spin resonance, 91, 308 Nickel-wolfram troscopy, 92, 388 Organic fragments presulfided catalyst, γ-Al₂O₃-supported: aromatic from [14C]ethylene chemisorbed over Pt(111) surcompound hydrogenation in synthetic crude faces, hydrogenation and dehydrogenation, 92, distillates, 95, 155 240 Niobia support for Ni catalysts, metal-support interac-Oscillations nonlinear kinetics in catalytic oxidation reactions, tions, 93, 201; 96, 202 96, 326 Niobia-silica support for Ni catalysts rate in H₂ oxidation on Ni, 93, 417 self-sustained, during CO oxidation CO adsorption, role of carbonyl formation and on Pd/SiO₂, 93, 321 support effects, 94, 343 on Pt/SiO₂, 91, 216 metal-support interactions, 96, 202 Osmium surface phase oxide, metal-support interactions, 95, 260 γ-Al₂O₃-supported catalyst, for CO hydrogenation, particle size effects, 95, 370 Nitric oxide tetraosmium cluster anions, alumina-supported, adsorption precursors for catalysts for but-1-ene isomerion LaMO₃ perovskites, 95, 558 zation, 94, 195 on Pt/SiO₂, 91, 208 chemisorption on MoO₃/Al₂O₃, 95, 501 Oxidation decomposition on Pt(210) and Pt(410), 95, 244 Ag(I)-containing films of polyfluorocarbon sulfonic acid, 93, 430 reaction with ammonia on etched metal wires, 92,

n-butene, selectivities: role of vanadium oxide clus-

ter size and structure, 91, 54

catalytic, nonlinear kinetics: periodic and aperiodic behavior and structure sensitivity, 96, 326

CO

on Pd/Al₂O₃, catalytic reactor system for transient response, **94**, 468

on Pd/SiO₂, spatial coverage and temperature patterns during oscillations, 93, 321

over Pt/Al₂O₃ under transient conditions, Fouriertransform infrared transmission spectroscopy, 94, 128

Rh field-emitter surface oxidation during, **92**, 167 effect on CO/H₂ reaction over TiO₂-supported Fe catalysts, **96**, 408

ethanol on Cr/SiO₂ catalysts, **94**, 24 ethylene

over Ag-based alloy catalysts, 91, 36

on zirconium phosphate-supported Ag catalyst, particle size and support effect, **94**, 455

furan, activity and selectivity on supported and unsupported V₂O₅ catalysts, **95**, 482

gas-phase, ethanol over Cu(II) and Co(II) ion-exchanged Y-type zeolite catalysts, 93, 303

H₂ on Ni, 93, 417

methanol

over ferric molybdate and MoO₃ catalysts, electron microscopy, **94**, 79

and grain morphology of V₂O₅, 91, 361

 K_2SO_4 -promoted unsupported V_2O_5 catalyst, 93, 360

partial

ethane to ethylene and acetaldehyde over silicasupported Mo catalyst, **94**, 37

methane with nitrous oxide on molybdena-silica, kinetics, **91**, 263

methanol with photoassisted MoO₃ supported on TiO₂, **94**, 108

propylene, ferric molybdate rearrangement, in situ Mössbauer spectroscopy, 95, 289

propane, perovskite-type mixed oxides, 93, 459 propylene

to acrolein over $Bi_2Mo_3O_{12}$, mechanism, **96**, 222 structure sensitivity of MoO_3 , **93**, 467

Rh field-emitter surfaces, 92, 167

selective

n-butane to maleic anhydride by V-P-O catalysts, **92**, 216

ethylene over Ag(110): chlorine promotion, kinetics and mechanism, 92, 272

in iron-antimony system, role of excess antimony as promoter, 91, 85

NiMoO₄ catalysts with excess MoO₃ for maleic anhydride synthesis

1,3-butadiene and furan selective oxidation, 95,

1-butene selective oxidation, **95**, 137 preparation and characterization, **95**, 120

propylene, by multicomponent molybdate catalysts: role of iron, **95**, 209

and total, ethylene on silver, 92, 364

SO₂ on vanadium catalysts, rate discontinuities, **94**, 323

surface, Rh(I) compounds and polymer-supported Rh(I) catalysts, X-ray photoelectron spectroscopy, 94, 335

temperature-programmed, Rh/Al₂O₃ and Rh/TiO₃ catalysts, morphology, **95**, 333

toluene over Co₃O₄, effect of samarium on catalytic activity, **93**, 186

Oxides

Cu/Zn/Al, catalytic behavior for low-temperature methanol synthesis, 94, 120

La₂Cu_{1-x}Ni_xO₄ ($0 \le x \le 1$), solid solution: N₂O decomposition, **93**, 279

mixed LaFeO and LaCoO₃ perovskite-type, effects of Sr²⁺ and Ce⁴⁺ substitution for La³⁺, **93**, 459

surfaces, adsorbed CO molecules, lateral interactions, infrared spectroscopy, **94**, 10

Oxychlorination

catalyst, supported liquid phase: microstructure, 93, 23

Oxygen

adsorption on

Ag at high O₂ pressures, 96, 72

Ag(I) in polyfluorocarbon sulfonic acid films, 93, 430

K-covered Au surfaces, 96, 420

LaNiO₃, kinetics, 93, 83

Ru-Au/SiO₂ catalysts, 95, 271

chemisorption on

supported Ag, 93, 288

MoO₃/Al₂O₃, 95, 501

unsupported MoS₂, pretreatment effects, **95**, 455 effect on Ru(III)-sulfonated linear polystyrene ionomers, **94**, 531

effects in ethylene oxide isomerization on singlecrystal Ag(111), 93, 92

and hydrogen particles, interactions with Pd particles for Pd/SiO₂ catalysts, **94**, 478

interaction with adsorbed CO on Pt/SiO₂, infrared spectroscopy, **92**, 388

reaction with ethylene on Pt/CeO₂ catalyst, **93**, 353 treatments, Pt dispersion during: effect of oxide support acidity and basicity, **95**, 492

Oxygen-aluminum-phosphorus, see Aluminum-phosphorus-oxygen

Ρ

Palladium

Al₂O₃-, MgO-, SiO₂-, and TiO₂-supported, CO₂ adsorption and surface interaction with H₂, **95**, 567

Al₂O₃-supported, surface ethylidyne species: infrared spectroscopic characterization, **96**, 1 -faujasite hybrid catalysts, synthesis gas conversion to C₂, C₃, and C₄ paraffins, 94, 16

interstitial carbon in, 95, 621

La₂O₃-supported

H₂ and CO interactions, 96, 88

methanol and methane synthesis, kinetics, 91, 104

particles, SiO₂-supported: CO disproportionation, 91, 1

rare earth oxide-supported, methanol and methane formation over, 95, 227

SiO₂-supported

CO hydrogenation over, addition of probe reactants, 96, 396

CO oxidation self-sustained oscillations, **93**, 321 and lanthana-promoted, H₂-CO interactions, **96**, 88

methanol and methane synthesis, kinetics, 91, 104 methanol synthesis, adsorbed CO and catalyst performance, relationship, 95, 465

methylcyclopropane hydrogenolysis and cyclopentane exchange with deuterium, comparison with Pt/SiO₂, **94**, 478

supported catalysts, strong metal-support interactions: temperature-programmed reduction and temperature-resolved sorption, **96**, 51

Palladium(II)

polymer-bound complexes, hydrogenation of alkenes and alkynes, 92, 327

Palladium-alumina

deactivation in furfural decarbonylation, kinetics and mechanism, 91, 254

Palladium-rhodium

γ-Al₂O₃-supported bimetallic catalyst: properties for methylcyclopentane hydrogenolysis, benzene and 1-hexene hydrogenation, and benzene hydrogenation deactivation by thiophene, **95**, 167

Paraffin

C₂, C₃, and C₄: selective synthesis from synthesis gas with Pd- and faujasite-containing hybrid catalyst, 94, 16

cracking

mechanism, 93, 30

selectivity, 93, 246

isomerization catalyzed by polymer-supported superacids, 96, 347

selective oxidation, 92, 216

Particles

Os aggregates, size effects on CO hydrogenation catalyzed by γ-Al₂O₃-supported Os, 95, 370

Pd, size effect in CO-H₂ reactions, 91, 1

Ru, supported on ultra-high-vacuum-cleaved mica, CO interaction, **95**, 361

size sensitivity in hydrocarbon reactions, **96**, 82 spheroid, surface segregation in alloys, **92**, 409

PAS, see Photoacoustic spectroscopy

Percolation

model of catalyst deactivation by pore blockage and site coverage, **96**, 552

Perovskites

K₂NiF₄ type, **93**, 279

LaFeO and LaCoO₃ mixed oxides, effects of Sr²⁺ and Ce⁴⁺ substitution for La³⁺, **93**, 459

LaMO₃, NO and CO surface interactions, **95**, 558 Phenylacetaldehyde

from epoxystyrene over sepiolite and silica-alumina, 92, 291

Phosphate

support for Ni catalysts, metal-support interactions, 93, 201

Phosphorus

effect on CO hydrogenation over Ru/Al₂O₃, **95**, 41 Phosphorus-aluminum-oxygen, *see* Aluminum-phosphorus-oxygen

Phosphorus-vanadium-oxygen, see Vanadium-phosphorus-oxygen

Phosphotungstic acid

Cu salts, 2-propanol dehydration over, 93, 224 methanol dehydration over, photoacoustic Fourier-transform infrared spectroscopy, 95, 108

Photoacoustic Fourier-transform infrared spectroscopy

methanol dehydration over 12-tungstophosphoric acid, mechanism, 95, 108

Photoacoustic spectroscopy

Cu/Al₂O₃ catalysts, surface properties, characterization, **94**, 514

Photocatalysis

cyclopentane-deuterium isotopic exchange over Pt or Ni/TiO₂, metal content and temperature effects in normal and SMSI state, **95**, 539

water-gas shift reaction over Pt/TiO₂, 91, 293

Photodehydrogenation

isopropanol on Pt/TiO₂, 91, 293

Photodissociation

water, **91**, 293 Photo-oxidation

methanol with MoO₃/TiO₂, catalyst structure and reaction selectivity, **94**, 108

Phthalic anhydride

from o-xylene oxidation, 91, 366

Physicochemical properties

Ni-promoted catalysts, 91, 318

Platinum

Al₂O₃-, SiO₂-, SiO₂-Al₂O₃-, and TiO₂-supported, H₂ heat of adsorption, direct measurement, **95**, 57

Al₂O₃-supported

activity and selectivity maintenance: pretreatment effect, **96**, 499

CO oxidation under transient conditions, Fourier transform infrared transmission spectroscopy, **94**, 128

high-temperature hydrogen treatment, letter to editor, 92, 193; reply, 92, 196

hydrocarbon conversion catalysts, activity maintenance and selectivity: Re and S effects, 96, 371

y-Al₂O₃-supported system, hydrogen spillover, 95. black, see Platinum, powders Cab-O-Sil-supported catalyst, CO desorption-adsorption infrared doublet, 92, 388 CeO₂-supported catalytic activity in methanation and water-gas shift reaction, 96, 285 ethylene and oxygen reaction on, 93, 353 1.3-dioxanes on, stereoselective isomerization and hydrogenolysis, 95, 605 -metal alloys, synthesis by precipitation method, **95**, 353 and Ni-catalyzed methanation, comparison with transient-kinetic methods, 94, 306 oxide-supported, effect of support acidity and basicity during O₂ treatments, 95, 492 particles, dispersion on SiO₂ and y-Al₂O₃, chlorine treatment effect, 92, 64 powders, unsupported: nitric-acid washed, cyclohexane hydrogenation turnover rate, 94, 225 Pt(111) surfaces, organic fragment hydrogenation and dehydrogenation, thermal desorption spectroscopy and ¹⁴C radiotracer studies, **92**, 240 Pt(210) and Pt(410), NO decomposition on, 95, 244 silica gel- and Al₂O₃-supported, anomalous scattering study, 92, 211 SiO₂-supported CO oxidation, oscillations, 91, 216 NO adsorption over wide temperature range, 91, 208 structural genesis determination by X-ray absorption spectroscopy, 95, 546 surface reconstruction, electronically induced geometrical catalytic effects, 94, 570 TiO₂-Al₂O₃ mixed oxide-supported, chemisorption properties and SMSI formation, 95, 473 TiO₂-supported CO poisoning, 94, 218 isopropanol photocatalytic dehydrogenation, 91, metal content and temperature effects on photocatalytic cyclopentane-deuterium isotopic exchange over, **95**, 539 photoelectrochemical preparation, 92, 11 strong metal-support interactions models, 93, 216 small-angle X-ray scattering, 92, 199 surface areas, 92, 199 Platinum-iridium γ-Al₂O₃- and SiO₂-supported bimetallic catalysts, redispersion in chlorine-containing gases, 96, 170 Platinum-palladium alloys, synthesis by precipitation method, 95, 353 Platinum-rhenium Al₂O₃-supported

activity and selectivity maintenance, pretreat-

ment effect, 96, 499

sulfided, reforming catalyst, reaction kinetics of methylcyclohexane dehydrogenation over, 96, 507 presulfided, dehydrocyclization and hydrogenolysis, 96, 371 Platinum-rhodium alloys, synthesis by precipitation method, 95, 353 Platinum-ruthenium alloys, synthesis by precipitation method, 95, 353 Poisoning catalyst, and catalytic deactivation, kinetic parameters, 95, 447 Ir/Al_2O_3 , by sulfur, **94**, 543 metal, effects on fluid cracking catalyst: luminescence probe, 96, 363 Pt/Al₂O₃ by CO, 94, 203 Pt/TiO₂ by CO, 94, 218 Polyacrylic acid bound Rh catalysts, activity enhancement by postcrosslinking, 96, 41 Polyfluorocarbon sulfonic acid films, oxygen adsorption on Ag(I) in, 93, 430 Polymer -supported superacids, for paraffin isomerization, 96, 347 Polymerization ethylene, on Cr(III)/SiO₂, 92, 260 Polystyrene sulfonated linear, see Sulfonated linear polystyrene Poly(styrene-divinylbenzene) sulfonated, polymer support for superacid: paraffin isomerization, 96, 347 Pore blockage, and site coverage: catalyst deactivation by, percolation model, 96, 552 development, and boundary diffusion, 91, 25 diffusion, and temperature-programmed desorption, 93, 197 Porous catalysts temperature-programmed desorption from, diffusional limitations, 93, 197 Porous media capillary, directional autocorrelation and diffusional tortuosity, 93, 192 **Porphyrins** Ni, catalytic hydrodemetallation, 93, 100, 122, 135 structure and reactivity, 93, 100 Potassium -covered Au surfaces, O₂ adsorption, 96, 420 effect on CO hydrogenation over Ru/Al₂O₃, 95, migration on Fe and Al₂O₃ surfaces, 92, 17 promotion, effects on activity and selectivity of silica-supported iron nitride catalysts, 91, 241 Potassium hydroxide and transition metal oxides, steam gasification of

graphite below 900 K, 96, 234

Potassium sulfate

promoting action on unsupported V₂O₅ catalyst for methanol oxidation, 93, 360

Precipitation

sulfides, method for Pt metal alloy synthesis, 95, 353

Pretreatment

effects on Ag dispersion, 93, 288

Probe molecules

addition to CO hydrogenation over SiO₂-supported Ni, Ru, Rh, and Pd, **96**, 396

Promoters

alkali, see Alkali promotion

chlorine, selective ethylene oxidation over Ag(110): kinetics and mechanism, 92, 272

effects in Fischer-Tropsch catalysis, 92, 429

excess antimony, role in selective oxidation in Fe-Sb system, **91**, 85

Group VIII metal, in MoS₂ and WS₂ hydrotreating catalysts, **91**, 308, 318

K and N effects, 91, 241

 $K_2SO_4,$ of unsupported V_2O_5 catalyst for methanol oxidation, $\boldsymbol{93,\,360}$

MnO and MoO₂ in SiO₂-supported Rh catalyst, effects in CO/H₂ reactions, **93**, 340

Propane

hydrogenolysis on Mo/Al₂O₃, 93, 388

oxidation, perovskite-type mixed oxides, 93, 459

2-Propanol, see Isopropyl alcohol

Propene

effect on Ru-catalyzed CO hydrogenation, 96, 23 Propylene

hydroformylation on RhNaX and RhNaY catalytic activity, 96, 563

in situ Fourier-transform infrared spectroscopy, 96. 574

interaction with V_2O_5 -MoO $_3$ catalysts, electron spin resonance, 96, 32

oxidation

to acrolein over Bi₂Mo₃O₁₂, mechanism, **96**, 222 partial, ferric molybdate rearrangement, in situ Mössbauer spectroscopy, **95**, 289

selective, role of iron in multicomponent molybdate catalysts, **95**, 209

structure sensitivity of MoO₃, 93, 467

Protolytic cracking, see Cracking

PSSA, see Sulfonated linear polystyrene Pyridine

adsorbed on MoO₃/Al₂O₃, catalyst acidic properties upon reduction in hydrogen: infrared and gravimetric studies, **94**, 408

-CO and ammonia-CO interactions on MgO-CoO solid solutions, infrared spectra, **96**, 586

effects on nickel porphyrin catalytic hydrodemetallation, 93, 122

poisoning of anisole hydrogenolysis on sulfided CoMo/Al₂O₃ and NiMo/SiO₂-Al₂O₃ catalysts, **94**, 230

synthesis with alumina-doped silica gel catalysts, Xray photoelectron spectroscopy, **94**, 69 Pyrolysis, *see* Decomposition, thermal

R

Radiotracer studies

¹⁴C, organic fragments: hydrogenation and dehydrogenation over Pt(111) surfaces, 92, 240

Raman spectroscopy

in situ, H₂O and NiO effects on surface structure of NiO-MoO₃/Al₂O₃ catalyst, **95**, 414

laser

in situ CO and H₂ reactions on fused iron catalyst, 95, 325

WO₃ on Al₂O₃, characterization, 92, 1

TiO₂-supported Mo and Co-Mo, 92, 340

Rare earth metals

hydrogenation catalysts of unsaturated hydrocarbons, properties, 96, 139

oxides, support for Pd catalyst: methanol and methane formation over, 95, 227

Reaction

intermediates

ethylene oxidation on Ag(111) single crystal surfaces, **92**, 364

surface formate-ion behavior in methanol decomposition over Cr₂O₃, **94**, 353

kinetic measurements, methanol decomposition on Ni(111), 92, 25

pathways, ethylene oxidation on Ag(111) single crystal surfaces, 92, 364

rate, hydrocracking catalyst probe, effects of zeolite unit cell size, 95, 220

Reaction gas chromatography/mass spectrometry alicyclic ketones, hydrogenation on iron, 93, 75 Reactivity

porphyrin, 93, 100

Redispersion

Ir particles on SiO₂ and γ-Al₂O₃ supports with chlorine-containing gases, **96**, 154

Pt-Ir particles on γ-Al₂O₃ and SiO₂ in chlorine-containing gases, **96**, 170

Pt metal particles on SiO₂ and γ-Al₂O₃, chlorine effect, 92, 64

Reducibility

 K_2SO_4 -promoted unsupported V_2O_5 catalyst for methanol oxidation, 93, 360

Ni/SiO₂ catalysts, precipitated precursors: effects of preparation conditions, **96**, 429

V₂O₅, grain morphology effect, **91**, 361

Reduction

Ag(I)-containing films of polyfluorocarbon sulfonic acid, 93, 430

CO, behavior of Fe-exchanged mordenite, 96, 182 Fe catalysts, supported: behavior in CO or H₂ atmospheres, 96, 261

Fe-MnO CO catalysts, 92, 98

LaNiO₃, kinetics, 93, 83

NO by H₂ over Rh/SiO₂, 92, 247

temperature-programmed, see Temperature-programmed reduction

V₂O₅-MoO₃ catalysts, kinetic model, **96**, 32 Resins

anion-exchange, see Anion-exchange resins Rhenium

effects on Pt/Al₂O₃ catalysts, 96, 371

Re₂O₇/γ-Al₂O₃ system, formation and structure under precatalysis conditions, **94**, 97

Re⁷⁺-support interaction in Re₂/Al₂O₃ catalysts, 93, 231

Rhenium heptoxide

Al₂O₃-, SiO₂-, and carbon-supported: temperatureprogrammed reduction, 93, 231

Rhenium-platinum, see Platinum-rhenium Rhodium

Al₂O₃-supported

morphology analysis with temperature-programmed reduction—oxidation and transmission electron spectroscopy, **95**, 333

water-gas shift over, 94, 166

γ-Al₂O₃- and ZrO₂-supported, strong metal-support interactions and CO hydrogenation, **96**, 106

AlPO₄-supported, styrene and α -methylstyrene individual and competitive hydrogenation, 94, 1

bound to polyacrylic acid, postcrosslinking catalytic activity enhancement, 96, 41

NaX-zeolite-supported, CO dissociation, infrared spectroscopy, **94,** 297

polycrystalline foils, CO hydrogenation over: deuterium isotope effects, **95**, 317

polymer-supported, and Rh(I) compounds: surface oxidation, X-ray photoelectron spectroscopy, 94, 335

RhOs₃ and Rh₄ clusters, in catalyst preparation for CO hydrogenation, **91**, 272

SiO₂-supported

CO hydrogenation over, addition of probe reactants, 96, 396

NO reduction by H_2 , 92, 247

promoter effects in Co/H₂ reactions, 93, 340 supported, formic acid decomposition, 91, 327 surfaces

clean, hydrogen cyanide synthesis, 91, 116 field-emitter, oxidation, 92, 167

TiO₂-supported

CO hydrogenation, alkali promotion effects, 92, 416, 435

effect of variation in support electric properties on CO and CO₂ hydrogenation, **95**, 578

morphology analysis with temperature-programmed reduction—oxidation and transmission electron spectroscopy, **95.** 333

SMSI analysis with transmission electron spectroscopy, **94**, 422

SMSI effect at high metal loading, 94, 300

unsupported: carbon and hydrogen adspecies during CO hydrogenation, **94**, 385

zeolites X and Y, propylene hydroformylation, 96, 563, 574

Rhodium(I)

chiral diphosphine-containing complexes, asymmetric transfer hydrogenation of acetophenone, **94**, 292

Rhodium-palladium, see Palladium-rhodium Ruthenium

alkaline earth-supported, for N₂ activation, characterization, **92**, 305

Al₂O₃-supported

ammonia synthesis, alkali promotion effect, 92, 296

CO hydrogenation, effect of K, B, and P additives, 95, 41

low-temperature methanation and Fischer-Tropsch activity, **94**, 566

-catalyzed CO hydrogenation, support effects, **96**, 23 hydrogen chemisorption, effects of added Cu, **94**, 576

particles supported on ultra-high-vacuum-cleaved mica, CO interaction, 95, 361

SiO₂-supported

alkyl intermediates, characterization with ¹³C NMR, **95**, 305

carbonaceous species deposition, ¹³C NMR, **93**, 1 CO hydrogenation over, addition of probe reactants, **96**, 396

hydrocarbon reactions (n-C₄) over, alkyl and π -allyl intermediates, **92**, 232

Ru(CO)₅ production by cation exchange, **92**, 184 supported, H₂ chemisorption: effects of surface structure, **93**, 368

unsupported

carbon and hydrogen adspecies during CO hydrogenation, **94**, 385

coverages of carbon- and hydrogen-containing species during CO hydrogenation, **91**, 142

zeolite-supported, CO hydrogenation, 91, 283 Ruthenium(001)

surface carbon hydrogenation, formation of methyne intermediates, 94, 51

Ruthenium(III)

in sulfonated linear polystyrene ionomers, reactions with CO, H₂, O₂, and alcohols, **94**, 531

Ruthenium carbonyl

production from SiO₂-supported Ru catalysts prepared by cation exchange, 92, 184

Ruthenium-cobalt, see Cobalt-ruthenium

Ruthenium-copper, see Copper-ruthenium

Ruthenium-gold

bimetallic catalysts

Fischer-Tropsch synthesis, 93, 256

MgO-supported, metal dispersion measurement with stepwise chemisorption and gas titration, **95**, 271

SiO₂-supported, metal dispersion measurement with stepwise chemisorption and gas titration, **95**, 271

Ruthenium-iron, see Iron-ruthenium

S

Samarium

effect on Co₃O₄ catalytic activity in toluene oxidation, 93, 186

Segregation

metal, in supported bimetallic catalysts, 91, 272 surface

in alloys, spheroidal particles, 92, 409 Pt and Ti, 93, 216

Selectivity

γ-Al₂O₃-supported Group VIII metals, 1-butene isomerization, **93**, 161

n-butene oxidation, effect of vanadium oxide cluster size and structure, **91**, 54

CO catalytic hydrogenation on Y-zeolite-supported Ru, 91, 283

energy gradient, zeolite-catalyzed reactions, 93, 246

Fe-nitride with silica gel support, K and N promotion effects, 91, 241

for methanol synthesis, V_2O_5 grain morphology, 91, 361

nickel porphyrin catalytic hydrodemetallation, acid-base modification, 93, 135

in oxidation in Fe-Sb system, excess antimony promoter, 91, 85

Sepiolite

epoxystyrene transformation to phenylacetaldehyde over, **92**, 291

Shape

selectivity, 1-hexene isomerization on H-ZSM-5 zeolite, 92, 398

Silane

catalytic formation on Cu-Si alloys, 91, 44 direct-synthesis kinetics on Cu₃Si, 91, 44 Silica

support for

bimetallic catalysts, structure analysis with Mössbauer and X-ray photoelectron spectroscopy, 96. 58

carbonyl-derived highly dispersed Co catalysts, magnetic properties, 95, 527

Cr, ethylene polymerization, 92, 260

Fe-nitride, Fischer-Tropsch reactions, 91, 231, 241

Ir, particle redispersion with chlorine-containing gases, **96**, 154

Ni catalysts

CO adsorption, role of carbonyl formation and support effects, **94**, 343

enantioselective hydrogenation, effects of preparation conditions, 96, 429

Ni, Ru, Rh, and Pd: CO hydrogenation, addition of probe reactants, 96, 396

Pd catalyst

 CO_2 adsorption and surface interaction with H_2 , 95, 567

CO disproportionation, 91, 1

CO oxidation self-sustained oscillations, 93, 321

lanthana-promoted, H_2 and CO interactions, 96, 88

methanol synthesis, adsorbed CO and catalyst performance, relationship, **95**, 465

Pt catalyst

chlorine effect on dispersion, 92, 64

CO desorption-adsorption, infrared doublet production, 92, 388

H₂ heat of adsorption, direct measurement, 95, 57

NO adsorption, 91, 208

structural genesis determination by X-ray absorption spectroscopy, 95, 546

Pt-Ir bimetallic catalysts, redispersion in chlorine-containing gases, 96, 170

Re₂O₇ catalysts, temperature-programmed reduction, **93**, 231

Rh catalysts

 CO/H_2 reactions, promoter effects, **93**, 340 NO reduction by H_2 , **92**, 247

Ru-Au bimetallic catalyst, metal dispersion measurement with stepwise chemisorption and gas titration, 95, 271

Ru catalyst

alkyl intermediates, characterization with ¹³C NMR, **95**, 305

Ru(CO)₅ production, 92, 184

 V_2O_5 catalyst, methane partial oxidation with N_2O , **94**, 501

Silica-alumina

intermediates in isomerization of methylpentenes, **92**, 355

pyridine synthesis catalysts, X-ray photoelectron spectroscopy, **94**, 69

support for Pt catalysts, H₂ heat of adsorption, direct measurement, **95**, 57

surfaces, epoxystyrene transformation to phenylacetaldehyde, 92, 291

Silica dioxide

support for

Cr catalysts, ethanol oxidation properties, characterization, 94, 24

Mo catalysts, partial oxidation of ethane to ethylene and acetaldehyde, 94, 37

Ni catalysts, CO disproportionation: kinetics and nature of deposited carbon, 95, 13

Pd catalyst, methylcyclopropane hydrogenolysis and cyclopentane exchange with deuterium, comparison with Pt/SiO₂, **94**, 478

Silica-niobia, see Niobia-silica

Silicon-copper, see Copper-silicon

```
Silver
                                                              Stoichiometry
  Ag(110) clean surface, ethylene selective oxidation:
                                                                unsupported MoS<sub>2</sub> catalyst, pretreatment effects,
       chlorine promotion, kinetics and mechanism,
                                                                     95, 455
       92, 272
                                                              Structure
  Ag(111) clean surface, ethylene selective epoxida-
                                                                Keggin, heteropoly compounds, 91, 93
       tion kinetics: comparison with Ag(110), 94,
                                                                K<sub>2</sub>SO<sub>4</sub>-promoted unsupported V<sub>2</sub>O<sub>5</sub> catalyst for
                                                                     methanol oxidation, 93, 360
  Ag(111) single crystal
                                                                sensitivity
    ethylene oxidation, selective and total, 92, 364
                                                                   CO hydrogenation on Co/γ-Al<sub>2</sub>O<sub>3</sub>, 92, 376
    ethylene oxide isomerization, 93, 92
                                                                   MoO<sub>3</sub>, in propylene mild oxidation, 93, 467
  particles, in polyfluorocarbon sulfonic acid films:
                                                                   and periodic and aperiodic behavior in catalytic
       oxygen adsorption, 93, 430
                                                                     oxidation reactions, 96, 326
  supported catalysts
                                                              Styrene
    dispersion, effects of support, pretreatment, and
                                                                and \alpha-methylstyrene, individual and competitive hy-
       gas environment, 93, 288
                                                                     drogenation by AlPO<sub>4</sub>-supported Rh catalysts.
    ultradispersed, effect of metal precursors and re-
                                                                     94, 1
       duction procedure on dispersion and O2 adsorp-
                                                              Substitution
       tion, 96, 72
                                                                isomorphous, in zeolite frameworks, 93, 451
  surface reconstruction, electronically induced geo-
                                                              Sulfides
       metrical catalytic effects, 94, 570
                                                                precipitation, method for Pt metal alloy synthesis,
  zirconium phosphate-supported, ethylene oxidation:
                                                                     95, 353
       particle size and support effect, 94, 455
                                                              Sulfiding
Silver-cadmium
                                                                effects on nickel porphyrin catalytic hydrodemetal-
  alloys, ethylene oxidation, 91, 36
                                                                     lation, 93, 122
Sintering
                                                                temperature-programmed
  Ag in He, H_2, and O_2, 93, 288
                                                                   MoO<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst, 92, 35
  Ni particles supported on γ-Al<sub>2</sub>O<sub>3</sub> model catalyst un-
                                                                   and reduction of CoO/Al<sub>2</sub>O<sub>3</sub> catalysts, 96, 122
       der H<sub>2</sub>, mechanism, 96, 12
                                                              Sulfonated linear polystyrene
  supported metal crystallites, role of strong interac-
                                                                -Ru films, reactions with CO, H<sub>2</sub>, O<sub>2</sub>, and alcohols,
       tions, 94, 239
                                                                     94, 531
  unsupported MoS<sub>2</sub> catalyst, pretreatment effects,
                                                             Sulfur
       95, 455
                                                                chemisorption thermodynamics on Ir/Al<sub>2</sub>O<sub>3</sub>, 94,
Site
                                                                content, sulfided Mo/Al<sub>2</sub>O<sub>3</sub> catalyst, 92, 155
    ethane dehydrogenation over Cr, 91, 155
                                                                effects on Pt/Al<sub>2</sub>O<sub>3</sub> catalysts, 96, 371
    ethylene polymerization over SiO2-supported
                                                                poisoning, and methanation, 93, 409
       Cr(III), 92, 260
                                                                S<sup>35</sup> exchange between H<sub>2</sub>S and WS<sub>2</sub>, 96, 544
  coverage, and pore blockage: catalyst deactivation,
                                                                -tolerant methanation catalyst, kinetics, 93, 409
       percolation model, 96, 552
                                                              Superacids
SLPC, see Supported liquid-phase catalysis
                                                                polymer-supported, for paraffin isomerization, 96,
SMSI, see Metal-support interactions, strong
Sodium-anionic triruthenium carbonyl clusters
                                                              Support
  catalyst supported on metal oxides, selective olefin
                                                                acidity and basicity, effect on oxide-supported Pt
       synthesis from CO and H<sub>2</sub>, 95, 293
                                                                     during O<sub>2</sub> treatment, 95, 492
Solid electrolyte potentiometry
                                                                effect on
  H<sub>2</sub> oxidation on Ni, 93, 417
                                                                  activity and selectivity in CO hydrogenation on
Sorption
                                                                     Y-zeolite-supported Ru. 91, 283
  temperature-resolved, supported Pd catalysts:
                                                                  Ag dispersion, 93, 288
       strong metal-support interactions, 96, 51
                                                                  alkali-promoted Ni, 93, 162
Steam gasification
                                                                  carbon hydrogenation on Ni, 91, 78
  carbon, Ni catalyst deactivation, 95, 71
                                                                  chemisorptive and magnetic properties of sup-
  ethane/steam, iron catalytic action on graphite, 95,
                                                                     ported Ni catalysts, 93, 270
                                                                  formic acid decomposition on supported Rh, 91,
  graphite below 900 K with KOH and transition
                                                                    327
       metal oxide, 96, 234
                                                                  Ru-catalyzed CO hydrogenation, 96, 23
Steam reforming
                                                               and promoter effect
  methane
                                                                  alkali-promoted Ru/Al<sub>2</sub>O<sub>3</sub>, ammonia synthesis,
    formaldehyde intermediate, 95, 313
```

Ru/alkaline earth, N₂ activation, 92, 305

over SiO₂-supported Ni-Cu catalysts, 96, 517

hydrotreating catalysts, ion scattering spectrome-Supported liquid-phase catalysis diffusion-reaction model, experimental evaluation, try, 95, 309 95, 202 Ni/Al₂O₃ catalysts, **96**, 210 flux model for liquid-load porous media, experimen-NiO-MoO₃/Al₂O₃ catalyst, H₂O and NiO effects, tal evaluation, 95, 193 theoretical model for transport and reaction, 95, sulfided Mo $-\gamma$ -Al₂O₃ catalysts, **96**, 276 181, 193, 202 titration, Ru-Au bimetallic catalysts, SiO2- and Surface MgO-supported, 95, 271, 284 acidity Synthesis γ-Al₂O₃, measurements, 92, 284 selective, C2, C3, and C4 paraffins from synthesis and cumene conversion of fluorided Co-Mo/γgas, 94, 16 Al₂O₃ catalysts, 96, 115 Synthesis gas, see also Carbon monoxide/hydrogen reanalysis, Cu-Si alloys, 95, 396 actions acetic acid synthesis, 96, 439 area active, V₂O₅: determination by electrophoretic selective conversion to C_2 , C_3 , and C_4 paraffins with migration and X-ray photoelectron spectros-Pd- and faujasite-containing hybrid catalyst, 94, copy, 95, 520 etched metal catalysts, 92, 136 steam reforming of methane, formaldehyde intermediate, 95, 313 Pt/TiO₂, SMSI catalyst, 92, 199 Synthetic crude chemistry distillates catalyzed by sulfided Ni-W/y-Al₂O₃, hy- Cu/γ - Al_2O_3 , for isopropanol decomposition, 91, drogenation of aromatic compounds in, 95, 155 MgO-CoO solid solutions, ammonia-CO and pyridine-CO interaction on: infrared spectra, T 96, 586 sulfided Mo-Al₂O₃ catalysts, 92, 155 Temperature calcination, effects on WO₃/Al₂O₃, 92, 1 composition of Cu-Ni alloy powders, determination -driven carbon diffusion mechanism, coke deposiby chemisorption, 95, 346 coverage and temperature patterns, oscillations durtion on catalysts, 93, 182 effects on photocatalytic isotopic cyclopentaneing CO oxidation on Pt/SiO₂, 91, 216 Cu-Si catalysts, characterization, 93, 68 deuterium exchange over Pt or Ni/TiO2 cataelectronically induced geometrical catalytic effects, lysts, **95**, 539 94, 570 local rises, silica-supported iron, 91, 185 low, oxygen chemisorption: characterization of Mo/ field-emitter, see Field-emitter surfaces interactions, CO and NO on LaMO3 perovskites, Al₂O₃ catalysts, **92**, 432 patterns 95, 558 inhomogeneous, oscillations during CO oxidation intermediates in methanol synthesis, chemical trapon Pt/SiO₂, 91, 216 ping by amines, **95**, 423 during oscillations of CO oxidation on Pd/SiO2, properties 93, 321 Cu/Al₂O₃ catalysts, spectroscopic characteriza-Temperature-programmed desorption tion, 94, 514 Rh catalysts dispersed on ZrO₂ and γ-Al₂O₃, strong H·NA-ZSM-5 zeolite, effect of tetrapropyl ammetal-support interactions, 96, 106 monium-ZSM-5 decomposition conditions, 94, 573 Temperature-programmed reduction y-Al₂O₃- and SiO₂-supported Pt metal particle dis-LaNiO₃, 93, 83 persion, chlorine effect, 92, 64 Raney catalysts, analysis, 93, 55 CoO/Al₂O₃ catalysts, 93, 38 reaction dynamics CO oxidation on Pt/SiO2, 91, 216 CoO-MoO₃/Al₂O₃ catalysts, 96, 381 selected area Fourier transform infrared studies, heteropoly compounds, 91, 93 hydrogen chemisorption properties of γ-Al₂O₃, 94, 93, 321 558 reactions of 2-methylcyclohexanol on Al-P-O cata-Rh/Al₂O₃ and Rh/TiO₃ catalysts, morphology, 95, lysts, 96, 242 science, techniques: chemical modifiers in catalysis, Ru/Al₂O₃ alkali-promoted catalyst, characterization 92, 272 for ammonia synthesis, 92, 296 segregation, in alloys: spheroidal particles, 92, 409 and sulfiding of CoO/Al₂O₃ catalysts, 96, 122 structure

effects on H₂ chemisorption on supported Ru, 93,

368

supported Pd catalysts, strong metal-support inter-

actions, 96, 51

Tetrapropyl ammonium

cations in ZSM-5 zeolite structure, effect of decomposition conditions on surface and catalytic properties of H·NA-ZSM-5, **94**, 573

Thermal gravimetry

effects of preparation conditions on precipitated precursors of Ni/SiO₂ catalysts, **96**, 429

Thermodynamics

filamentous carbon formation on Fe and Ni catalysts, **96**, 454

limits to pseudo-mass-action and pseudomonomolecular kinetics on multicomponent catalytic systems, **94**, 148

Thiophene

catalytic hydrodesulfurization, reversed-flow gas chromatography, **94**, 376

hydrodesulfurization

activity and selectivity over Mo/TiO₂ catalysts, **95,** 33

over Chevrel phase compounds, 93, 375

Thorium dioxide

Na-doped catalyst for methanol production from CO hydrogenation, **95**, 385

Titania, see Titanium dioxide

Titanium

diffusion in Pt, 93, 216

Titanium dioxide

reduced, chemisorption and catalysis inhibition in TiO₂ catalysts, **93**, 216

support for

Fe catalysts, CO/H₂ reaction over, oxidation effect, **96**, 408

metal catalysts, electronic effects in strong metal—support interactions, comment, **94**, 581; replies, **94**, 586, 587

Mo catalysts, thiophene hydrodesulfurization activity and selectivity, 95, 33

Mo and Co-Mo catalysts, preparation and characterization, 92, 340

MoO₃, methanol photo-oxidation, 94, 108

Ni catalysts

effects of

titania adspecies on CO and H₂ coadsorption, 96. 597

varying surface coverage on CO and H₂ chemisorption, 95, 587

Ni-Fe alloy particles, methanation kinetics, 91,

Ni or Pt catalysts, metal content effects on photocatalytic cyclopentane-deuterium isotopic exchange over, 95, 539

Pd catalyst, CO₂ adsorption and surface interaction with H₂, **95**, 567

Pt catalysts

CO poisoning, 94, 218

H₂ heat of adsorption, direct measurement, 95, 57
 isopropanol photocatalytic dehydrogenation,
 91, 293

photoelectrochemical preparation, 92, 11 SMSI catalyst, small-angle X-ray scattering, 92,

199

SMSI model, 93, 216

Rh catalysts

CO and CO₂ hydrogenation over: effect of variation in support electric properties, 95, 578

CO hydrogenation, alkali promotion effects, 92, 416, 435

formic acid decomposition, 91, 327

morphology analysis with temperature-programmed reduction-oxidation and transmission electron spectroscopy, **95**, 333

SMSI analysis with transmission electron spectroscopy, **94**, 422

SMSI effect at high metal loading, **94**, 300 V₂O₅ catalysts

active surface area determination by electrophoretic migration and X-ray photoelectron spectroscopy, **95**, 520

fresh and used, comparative o-xylene oxidation to phthalic anhydride, **91**, 366

and Ti₂O₃, support for Ni catalysts: CO hydrogenation and adsorption, **96**, 491

treatment of Ni surfaces, effect on filamentous carbon growth, 93, 312

Fitration

active metals, hydrogen spillover from Ru to Cu in Cu/Ru bimetallic system, 95, 321

Toluene

oxidation over Co₃O₄, effect of samarium on catalytic activity, **93**, 186

Tortuosity

diffusional, capillary porous media, 93, 192

Transformations

initial, of hydrodesulfurization catalysts: Ni role, 91, 64

Transient response

catalytic reactor system for, description and use in CO oxidation on Pd/Al₂O₃, 94, 468

Transition metals

oxides, and KOH: steam gasification of graphite below 900 K, 96, 234

Transmission electron spectroscopy

Rh/Al₂O₃ and Rh/TiO₃ catalysts, morphology, 95, 333

Rh/TiO $_2$ system, strong metal-support interactions, 94, 422

supported Pt dispersion, chlorine effect, 92, 64

Tungsten

heteropoly compounds, methanol and ethanol conversions, 91, 132

Tungsten disulfide

and H₂S, S³⁵ exchange, 96, 544

hydrotreating catalyst, Group VIII promoter, 91, 308, 318

Tungsten-nickel, see Nickel-tungsten

Tungsten oxide Al₂O₃-supported, laser Raman characterization, 92, Tungsten sulfide catalysts, characterization, 95, 249 12-Tungstophosphates acid-catalytic behavior for dehydration of alcohols, 95, 49 12-Tungstophosphoric acid, see Phosphotungstic acid Turnover frequency ammonia synthesis by alkali-promoted Ru/Al₂O₃, 92, 296, 305 N₂ isotopic equilibration reaction on Ru/alkaline earth, 92, 305 U Ultraviolet-visible spectroscopy vanadium ion coordination in vanadium oxide clusters, 91, 54 ٧ Valence states molybdenum in sulfided molybdena-alumina, 92, 155 Vanadium effects on catalytic properties of high-activity fluid cracking catalyst, 96, 363 Vanadium oxide Al₂O₃- and TiO₂-supported catalyst, active surface area determination by electrophoretic migration and x-ray photoelectron spectroscopy, 95, clusters, size and structure: effect on selectivity in n-butene oxidation, 91, 54 Vanadium pentoxide grain morphology, and reducibility and selectivity for methanol oxidation, 91, 361 SiO₂-supported, methane partial oxidation with N₂O, 94, 501 supported and unsupported catalysts, furan oxidation activity and selectivity, 95, 482 unsupported catalysts, K2SO4-promoted: for methanol oxidation, 93, 360 Vanadium pentoxide-anatase interaction, 91, 366 Vanadium pentoxide-molybdenum trioxide catalysts, interaction with propylene: electron spin

resonance, 96, 32

Vanadium-phosphorus-oxygen

leic anhydride, 92, 216

model catalysts, n-butane selective oxidation to ma-

W

Water

and liquid chloroform, deuterium transfer by anionexchange resins, 93, 209

and NiO, effects on NiO-MoO₃/Al₂O₃ catalyst surface structure, **95**, 414

photodissociation, 91, 293

role in 2-propanol dehydration over Cu salts of 12tungstophosphoric acid, 93, 224

vapor, effect on potassium migration, 92, 17

Water-gas shift

over magnetite particles on graphite, 91, 167 over Pt/CeO₂, catalytic activity, 96, 285

over Pt/TiO₂, 91, 293

over Rh, transient enhancement, 94, 166

Weisz diffusivity cell

geometric correction factor, simple closed form expression, 94, 303

Wetting

supported metal crystallites, role of strong chemical interactions, 94, 239

Wires

etched, morphology, **92**, 136 Wolfram-nickel, see Nickel-wolfram

Х

XPS, see X-ray photoelectron spectroscopy

X-ray absorption fine structure technique

Cu-ZnO/Al₂O₃ catalysts for low-temperature CO shift reaction, **96**, 314

X-ray absorption spectroscopy

Pt on SiO₂, structural genesis determination, **95**, 546 X-ray diffraction

boron determination, 91, 352

Co/ZSM-5 catalysts, in situ structure characterization, 92, 145

Cu/Al₂O₃ catalysts, surface properties, characterization, **94**, 514

Fe-nitride, silica support, 91, 231

supported Pt dispersion, chlorine effect, 92, 64

X-ray photoelectron spectroscopy

Al₂O₃- and TiO₂-supported V₂O₅ catalysts, active surface area determination, **95**, 520

Cu/Al₂O₃ catalysts, surface properties, characterization, **94**, 514

Cu-NaY zeolites, 94, 370

Cu-Si catalysts, surface characterization, 93, 68

Group VIII metals, γ-Al₂O₃-supported, 1-butene isomerization, 93, 161

Raney catalysts, surface analysis, 93, 55

Rh(I) compounds and polymer-supported Rh(I) catalysts, surface oxidation, 94, 335

Ru/alkaline earth for N₂ activation, 92, 305

Ru/Al₂O₃, alkali-promoted, characterization for ammonia synthesis, 92, 296

shake-up satellite peaks, Cu2+, 93, 68

silica-alumina catalysts for pyridine synthesis, 94.

SiO₂-supported bimetallic catalysts, structure, 96.

X-ray scattering

anomalous, wide-angle: supported Pt metal catalysts, 92, 211

small-angle, Pr/TiO₂ SMSI catalyst, 92, 199 o-Xylene

oxidation to phthalic anhydride, 91, 366

Z

Zeolites, see also Erionite, Faujasite, Mordenite, Offretite

acidic, cracking of n-heptane and branched isomers on, product distribution, 94, 445

beryllium silicates with ZSM-5-type structures, synthesis, catalytic properties, and 9Be NMR chemical shifts, 94, 508

borosilicate, 91, 352

[B]ZSM-5, catalytic properties, 93, 451

-catalyzed reactions, energy gradient selectivity, 93,

component of hydrocracking catalyst, effects of unit cell size on probe reaction and catalyst deactivation, 95, 220

Co/ZSM-5, structure: in situ X-ray diffraction, 92, 145

Cu-NaY, X-ray photoelectron spectroscopy and electron spin resonance studies, 94, 370

diffusivities of hydrocarbons by frequency response method, 93, 176

frameworks, isomorphous substitution in, 93, 451 hole-catalyzed and photoassisted hole-catalyzed pericyclic reactions on, 95, 300

hole-catalyzed photoassisted Cope reaction on, 95, 613

H-ZSM-5

framework hydroxyl groups, location, 95, 609 1-hexene isomerization, mechanism, 92, 398

rare earth HY catalysts, acid sites in alkane cracking, 93, 30

Rh/NaX, CO dissociation: infrared spectroscopy.

Rh/NaX and Rh/NaY, propylene hydroformylation on, 96, 563, 574

acidic, carbonium ions as intermediates in methylpentene isomerization, 92, 355

support for Ru, CO hydrogenation on, 91, 283 ZSM-5

benzene alkylation with [1-14C]ethanol over, carbon-14 rearrangement, 96, 357

catalyst for ethylbenzene alkylation or disproportionation to produce p-diethylbenzene, 95, 512

high-Al₂O₃, binder activation, 93, 471

hydrocarbon production from methanol over: aromatic hydrocarbon in, 93, 205

paraffin cracking selectivity, 93, 246

synthesis mechanism, cylindrical internal reflectance in situ infrared spectroscopy, 95, 21

from tetrapropyl ammonium form, effect of decomposition conditions on surface and catalytic properties of H·NA-ZSM-5, 94, 573

Zinc-copper, see Copper-zinc

Zinc-copper-aluminum

mixed oxides, catalytic behavior for low-temperature methanol synthesis, 94, 120

Zinc oxide

CO

adsorption, 92, 79

-deuterium interaction on, 92, 79

methanol decomposition on, infrared and programmed desorption study, 95, 617

surface properties, infrared spectra, 92, 79

Zinc oxide-copper, see Copper-zinc oxide Zirconium oxide

support for Rh catalysts, strong metal-support interactions and CO hydrogenation, 96, 106

Zirconium phosphate

crystalline, characterization and isomerization activities, 94, 491

support for Ag catalyst for ethylene oxidation, particle size and support effect, 94, 455

Statement of ownership, management, and circulation required by the Act of October 23, 1962, Section 9369, Title 39, United States Code: of

JOURNAL OF CATALYSIS

JOURNAL OF CATALYSIS

Published monthly by Academic Press, Inc., 111 Fifth Avenue, New York, NY 10003. Number of issues published annually:
12. Editors: Dr. W. K. Hall, Chemistry Building, University of Pittsburgh, Pittsburgh, PA 13260 and Dr. F. S. Stone, School of Chemistry, University of Bath, Bath BAZ 7AY, England.

Owned by Academic Press, Inc., 111 Fifth Avenue, New York, NY 10003. Known bondholders, mortgages, and other security holders owning or holding i percent or more of total amount of bonds, mortgages, and other securities? None.

Paragraphs 2 and 3 includes, in cases where the stockholder or security holder appears upon the boods of the company as tratements in the time of the person or corporation for whom such trustee is acting, also the tatements in the time of the person or corporation for whom such trustee is acting, also the tatements in the time of the person of the person or corporation for whom such trustees and conditions under which stockholders and security holders that a proper of the person of the person of a corporation which itself is a stockholder of holder of bonds, mortgages, or other securities of the publishing corporation have been included in paragraphs 2 and 3 when the interests of such individuals are equivalent to 1 percent or more of the total amount of the stock or securities of the publishing corporation.

Total no. copies printed: average no. copies each issue during preceding 12 months: 1774; single issue nearest to filing date: 1761. Paid circulation (a) to term subscribers by mall, carrier delivery, or by other means: average no. copies each issue during preceding 12 months: 61; single issue nearest to filing date: 1761. Potal no. copies seach issue during preceding 12 months: 1938; single issue nearest to filing date: 1761. Potal no. copies ach issue during preceding 12 months: 1938; single issue nearest to filing date: 1761. Potal no. copies ach issue during preceding 12 months: 1938; single issue nearest to filing date: 1761. Potal no. copies ach issue during pr